File size: 21,356 Bytes
b72fd8a
 
50e9f88
b72fd8a
131f180
b72fd8a
 
 
 
4c322cf
b72fd8a
6ff3ca6
 
 
2a2f7c6
a1b32c1
ada247c
a1b32c1
ccbfe76
ada247c
4c322cf
b72fd8a
 
a3de454
b72fd8a
7d9eec3
 
6ff3ca6
7d9eec3
5633565
b72fd8a
5633565
 
b72fd8a
d6e2447
 
 
 
6ff3ca6
 
 
 
d6e2447
 
 
b72fd8a
 
 
 
50e9f88
 
b72fd8a
 
 
 
a85dc3c
b72fd8a
 
d6e2447
b72fd8a
 
 
 
 
 
a85dc3c
b72fd8a
d6e2447
b72fd8a
 
6e99075
 
6f6c89b
 
501c404
e0e906d
595b5f3
9548fb4
 
 
e667af9
595b5f3
 
 
 
 
 
 
6f6c89b
 
501c404
c0bbe98
 
 
595b5f3
 
 
e0e906d
 
595b5f3
 
 
501c404
a85d7d2
501c404
6e99075
501c404
8c8001e
131f180
501c404
 
 
 
c5d0765
6ff3ca6
131f180
 
 
b5773e7
4a23819
b5773e7
 
131f180
 
501c404
6a24efd
6ff3ca6
501c404
670baea
501c404
 
 
 
 
670baea
 
eec0c16
670baea
 
 
 
 
eec0c16
 
 
 
 
6e99075
 
 
501c404
6e99075
 
501c404
670baea
 
eec0c16
670baea
 
501c404
595b5f3
 
501c404
595b5f3
501c404
6e99075
595b5f3
c7ebe8c
 
 
 
 
595b5f3
6e99075
b72fd8a
a85dc3c
 
 
 
b72fd8a
482e6f7
4ceaed1
b72fd8a
 
 
 
 
 
 
f6adc1d
 
 
b72fd8a
 
 
 
 
 
482e6f7
501c404
b72fd8a
 
 
 
 
 
 
 
 
482e6f7
 
 
 
 
f6adc1d
 
dbca1ee
 
6bc716a
 
f6adc1d
b72fd8a
 
6e99075
6bc716a
b72fd8a
6f6c89b
482e6f7
b72fd8a
 
6bc716a
a1b32c1
 
 
 
 
482e6f7
 
b72fd8a
a1b32c1
b72fd8a
 
 
 
 
 
 
 
 
 
 
 
5f193dc
b72fd8a
 
 
46f7c1b
b72fd8a
 
 
 
 
a85dc3c
 
b72fd8a
482e6f7
5f193dc
b72fd8a
 
 
 
 
 
 
 
 
aad17fa
 
b72fd8a
 
482e6f7
595b5f3
b72fd8a
 
 
 
 
 
 
 
 
482e6f7
 
 
 
 
b72fd8a
6e99075
b72fd8a
 
aad17fa
482e6f7
b72fd8a
 
 
a1b32c1
 
 
 
 
 
482e6f7
 
b72fd8a
 
 
5f193dc
b72fd8a
46f7c1b
 
b72fd8a
 
 
 
 
a85dc3c
 
b72fd8a
482e6f7
5f193dc
b72fd8a
 
 
 
 
 
 
 
 
 
 
 
 
482e6f7
595b5f3
b72fd8a
 
 
 
 
 
 
 
 
482e6f7
 
 
 
 
b72fd8a
 
 
 
6e99075
b72fd8a
 
6f6c89b
482e6f7
b72fd8a
 
 
 
 
a1b32c1
 
 
 
 
482e6f7
 
b72fd8a
a1b32c1
b72fd8a
 
f57fb14
 
 
5f193dc
b72fd8a
 
46f7c1b
 
b72fd8a
f421dd9
b72fd8a
50e9f88
 
 
87cbb02
 
50e9f88
 
 
 
 
b39eb49
50e9f88
b39eb49
50e9f88
b72fd8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3de454
ca772aa
57b2878
b72fd8a
 
 
 
57b2878
ca772aa
9820e0f
57b2878
 
 
 
 
 
 
 
 
 
 
 
 
 
b72fd8a
 
b5773e7
b72fd8a
 
 
 
 
 
b5773e7
b72fd8a
 
 
 
 
 
b6032b5
e862b08
a85d7d2
e862b08
a85d7d2
e862b08
 
 
 
 
 
 
 
d5e37cc
e862b08
2a2f7c6
e862b08
2a2f7c6
e862b08
2a2f7c6
e862b08
2a2f7c6
e862b08
2a2f7c6
e862b08
2a2f7c6
e862b08
2a2f7c6
aa98cf2
e862b08
 
b6032b5
6f6c89b
501c404
6f6c89b
 
e862b08
813ca79
501c404
 
 
6f6c89b
b6032b5
e862b08
 
 
 
c7ebe8c
e862b08
d41e01c
 
 
c7ebe8c
19e342a
2a2f7c6
19e342a
e862b08
 
131f180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
import os
import whisper
import ctranslate2
import gradio as gr
import torchaudio
from abc import ABC, abstractmethod
from typing import BinaryIO, Union, Tuple, List
import numpy as np
from datetime import datetime
from faster_whisper.vad import VadOptions

from modules.uvr.music_separator import MusicSeparator
from modules.utils.paths import (WHISPER_MODELS_DIR, DIARIZATION_MODELS_DIR, OUTPUT_DIR, DEFAULT_PARAMETERS_CONFIG_PATH,
                                 UVR_MODELS_DIR)
from modules.utils.constants import *
from modules.utils.subtitle_manager import *
from modules.utils.youtube_manager import get_ytdata, get_ytaudio
from modules.utils.files_manager import get_media_files, format_gradio_files, load_yaml, save_yaml, read_file
from modules.whisper.data_classes import *
from modules.diarize.diarizer import Diarizer
from modules.vad.silero_vad import SileroVAD


class BaseTranscriptionPipeline(ABC):
    def __init__(self,
                 model_dir: str = WHISPER_MODELS_DIR,
                 diarization_model_dir: str = DIARIZATION_MODELS_DIR,
                 uvr_model_dir: str = UVR_MODELS_DIR,
                 output_dir: str = OUTPUT_DIR,
                 ):
        self.model_dir = model_dir
        self.output_dir = output_dir
        os.makedirs(self.output_dir, exist_ok=True)
        os.makedirs(self.model_dir, exist_ok=True)
        self.diarizer = Diarizer(
            model_dir=diarization_model_dir
        )
        self.vad = SileroVAD()
        self.music_separator = MusicSeparator(
            model_dir=uvr_model_dir,
            output_dir=os.path.join(output_dir, "UVR")
        )

        self.model = None
        self.current_model_size = None
        self.available_models = whisper.available_models()
        self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
        self.translatable_models = ["large", "large-v1", "large-v2", "large-v3"]
        self.device = self.get_device()
        self.available_compute_types = self.get_available_compute_type()
        self.current_compute_type = self.get_compute_type()

    @abstractmethod
    def transcribe(self,
                   audio: Union[str, BinaryIO, np.ndarray],
                   progress: gr.Progress = gr.Progress(),
                   *whisper_params,
                   ):
        """Inference whisper model to transcribe"""
        pass

    @abstractmethod
    def update_model(self,
                     model_size: str,
                     compute_type: str,
                     progress: gr.Progress = gr.Progress()
                     ):
        """Initialize whisper model"""
        pass

    def run(self,
            audio: Union[str, BinaryIO, np.ndarray],
            progress: gr.Progress = gr.Progress(),
            add_timestamp: bool = True,
            *pipeline_params,
            ) -> Tuple[List[Segment], float]:
        """
        Run transcription with conditional pre-processing and post-processing.
        The VAD will be performed to remove noise from the audio input in pre-processing, if enabled.
        The diarization will be performed in post-processing, if enabled.
        Due to the integration with gradio, the parameters have to be specified with a `*` wildcard.

        Parameters
        ----------
        audio: Union[str, BinaryIO, np.ndarray]
            Audio input. This can be file path or binary type.
        progress: gr.Progress
            Indicator to show progress directly in gradio.
        add_timestamp: bool
            Whether to add a timestamp at the end of the filename.
        *pipeline_params: tuple
            Parameters for the transcription pipeline. This will be dealt with "TranscriptionPipelineParams" data class.
            This must be provided as a List with * wildcard because of the integration with gradio.
            See more info at : https://github.com/gradio-app/gradio/issues/2471

        Returns
        ----------
        segments_result: List[Segment]
            list of Segment that includes start, end timestamps and transcribed text
        elapsed_time: float
            elapsed time for running
        """
        params = TranscriptionPipelineParams.from_list(list(pipeline_params))
        params = self.validate_gradio_values(params)
        bgm_params, vad_params, whisper_params, diarization_params = params.bgm_separation, params.vad, params.whisper, params.diarization

        if bgm_params.is_separate_bgm:
            music, audio, _ = self.music_separator.separate(
                audio=audio,
                model_name=bgm_params.model_size,
                device=bgm_params.device,
                segment_size=bgm_params.segment_size,
                save_file=bgm_params.save_file,
                progress=progress
            )

            if audio.ndim >= 2:
                audio = audio.mean(axis=1)
                if self.music_separator.audio_info is None:
                    origin_sample_rate = 16000
                else:
                    origin_sample_rate = self.music_separator.audio_info.sample_rate
                audio = self.resample_audio(audio=audio, original_sample_rate=origin_sample_rate)

            if bgm_params.enable_offload:
                self.music_separator.offload()

        if vad_params.vad_filter:
            vad_options = VadOptions(
                threshold=vad_params.threshold,
                min_speech_duration_ms=vad_params.min_speech_duration_ms,
                max_speech_duration_s=vad_params.max_speech_duration_s,
                min_silence_duration_ms=vad_params.min_silence_duration_ms,
                speech_pad_ms=vad_params.speech_pad_ms
            )

            vad_processed, speech_chunks = self.vad.run(
                audio=audio,
                vad_parameters=vad_options,
                progress=progress
            )

            if vad_processed.size > 0:
                audio = vad_processed
            else:
                vad_params.vad_filter = False

        result, elapsed_time = self.transcribe(
            audio,
            progress,
            *whisper_params.to_list()
        )

        if vad_params.vad_filter:
            result = self.vad.restore_speech_timestamps(
                segments=result,
                speech_chunks=speech_chunks,
            )

        if diarization_params.is_diarize:
            result, elapsed_time_diarization = self.diarizer.run(
                audio=audio,
                use_auth_token=diarization_params.hf_token,
                transcribed_result=result,
                device=diarization_params.device
            )
            elapsed_time += elapsed_time_diarization

        self.cache_parameters(
            params=params,
            add_timestamp=add_timestamp
        )
        return result, elapsed_time

    def transcribe_file(self,
                        files: Optional[List] = None,
                        input_folder_path: Optional[str] = None,
                        file_format: str = "SRT",
                        add_timestamp: bool = True,
                        progress=gr.Progress(),
                        *pipeline_params,
                        ) -> Tuple[str, List]:
        """
        Write subtitle file from Files

        Parameters
        ----------
        files: list
            List of files to transcribe from gr.Files()
        input_folder_path: str
            Input folder path to transcribe from gr.Textbox(). If this is provided, `files` will be ignored and
            this will be used instead.
        file_format: str
            Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
        add_timestamp: bool
            Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the subtitle filename.
        progress: gr.Progress
            Indicator to show progress directly in gradio.
        *pipeline_params: tuple
            Parameters for the transcription pipeline. This will be dealt with "TranscriptionPipelineParams" data class

        Returns
        ----------
        result_str:
            Result of transcription to return to gr.Textbox()
        result_file_path:
            Output file path to return to gr.Files()
        """
        try:
            params = TranscriptionPipelineParams.from_list(list(pipeline_params))
            writer_options = {
                "highlight_words": True if params.whisper.word_timestamps else False
            }

            if input_folder_path:
                files = get_media_files(input_folder_path)
            if isinstance(files, str):
                files = [files]
            if files and isinstance(files[0], gr.utils.NamedString):
                files = [file.name for file in files]

            files_info = {}
            for file in files:
                transcribed_segments, time_for_task = self.run(
                    file,
                    progress,
                    add_timestamp,
                    *pipeline_params,
                )

                file_name, file_ext = os.path.splitext(os.path.basename(file))
                subtitle, file_path = generate_file(
                    output_dir=self.output_dir,
                    output_file_name=file_name,
                    output_format=file_format,
                    result=transcribed_segments,
                    add_timestamp=add_timestamp,
                    **writer_options
                )
                files_info[file_name] = {"subtitle": read_file(file_path), "time_for_task": time_for_task, "path": file_path}

            total_result = ''
            total_time = 0
            for file_name, info in files_info.items():
                total_result += '------------------------------------\n'
                total_result += f'{file_name}\n\n'
                total_result += f'{info["subtitle"]}'
                total_time += info["time_for_task"]

            result_str = f"Done in {self.format_time(total_time)}! Subtitle is in the outputs folder.\n\n{total_result}"
            result_file_path = [info['path'] for info in files_info.values()]

            return result_str, result_file_path

        except Exception as e:
            print(f"Error transcribing file: {e}")
            raise
        finally:
            self.release_cuda_memory()

    def transcribe_mic(self,
                       mic_audio: str,
                       file_format: str = "SRT",
                       add_timestamp: bool = True,
                       progress=gr.Progress(),
                       *pipeline_params,
                       ) -> Tuple[str, str]:
        """
        Write subtitle file from microphone

        Parameters
        ----------
        mic_audio: str
            Audio file path from gr.Microphone()
        file_format: str
            Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
        add_timestamp: bool
            Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
        progress: gr.Progress
            Indicator to show progress directly in gradio.
        *pipeline_params: tuple
            Parameters related with whisper. This will be dealt with "WhisperParameters" data class

        Returns
        ----------
        result_str:
            Result of transcription to return to gr.Textbox()
        result_file_path:
            Output file path to return to gr.Files()
        """
        try:
            params = TranscriptionPipelineParams.from_list(list(pipeline_params))
            writer_options = {
                "highlight_words": True if params.whisper.word_timestamps else False
            }

            progress(0, desc="Loading Audio..")
            transcribed_segments, time_for_task = self.run(
                mic_audio,
                progress,
                add_timestamp,
                *pipeline_params,
            )
            progress(1, desc="Completed!")

            file_name = "Mic"
            subtitle, file_path = generate_file(
                output_dir=self.output_dir,
                output_file_name=file_name,
                output_format=file_format,
                result=transcribed_segments,
                add_timestamp=add_timestamp,
                **writer_options
            )

            result_str = f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
            return result_str, file_path
        except Exception as e:
            print(f"Error transcribing mic: {e}")
            raise
        finally:
            self.release_cuda_memory()

    def transcribe_youtube(self,
                           youtube_link: str,
                           file_format: str = "SRT",
                           add_timestamp: bool = True,
                           progress=gr.Progress(),
                           *pipeline_params,
                           ) -> Tuple[str, str]:
        """
        Write subtitle file from Youtube

        Parameters
        ----------
        youtube_link: str
            URL of the Youtube video to transcribe from gr.Textbox()
        file_format: str
            Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
        add_timestamp: bool
            Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
        progress: gr.Progress
            Indicator to show progress directly in gradio.
        *pipeline_params: tuple
            Parameters related with whisper. This will be dealt with "WhisperParameters" data class

        Returns
        ----------
        result_str:
            Result of transcription to return to gr.Textbox()
        result_file_path:
            Output file path to return to gr.Files()
        """
        try:
            params = TranscriptionPipelineParams.from_list(list(pipeline_params))
            writer_options = {
                "highlight_words": True if params.whisper.word_timestamps else False
            }

            progress(0, desc="Loading Audio from Youtube..")
            yt = get_ytdata(youtube_link)
            audio = get_ytaudio(yt)

            transcribed_segments, time_for_task = self.run(
                audio,
                progress,
                add_timestamp,
                *pipeline_params,
            )

            progress(1, desc="Completed!")

            file_name = safe_filename(yt.title)
            subtitle, file_path = generate_file(
                output_dir=self.output_dir,
                output_file_name=file_name,
                output_format=file_format,
                result=transcribed_segments,
                add_timestamp=add_timestamp,
                **writer_options
            )

            result_str = f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"

            if os.path.exists(audio):
                os.remove(audio)

            return result_str, file_path

        except Exception as e:
            print(f"Error transcribing youtube: {e}")
            raise
        finally:
            self.release_cuda_memory()

    def get_compute_type(self):
        if "float16" in self.available_compute_types:
            return "float16"
        if "float32" in self.available_compute_types:
            return "float32"
        else:
            return self.available_compute_types[0]

    def get_available_compute_type(self):
        if self.device == "cuda":
            return list(ctranslate2.get_supported_compute_types("cuda"))
        else:
            return list(ctranslate2.get_supported_compute_types("cpu"))

    @staticmethod
    def format_time(elapsed_time: float) -> str:
        """
        Get {hours} {minutes} {seconds} time format string

        Parameters
        ----------
        elapsed_time: str
            Elapsed time for transcription

        Returns
        ----------
        Time format string
        """
        hours, rem = divmod(elapsed_time, 3600)
        minutes, seconds = divmod(rem, 60)

        time_str = ""
        if hours:
            time_str += f"{hours} hours "
        if minutes:
            time_str += f"{minutes} minutes "
        seconds = round(seconds)
        time_str += f"{seconds} seconds"

        return time_str.strip()

    @staticmethod
    def get_device():
        if torch.cuda.is_available():
            return "cuda"
        elif torch.backends.mps.is_available():
            if not BaseTranscriptionPipeline.is_sparse_api_supported():
                # Device `SparseMPS` is not supported for now. See : https://github.com/pytorch/pytorch/issues/87886
                return "cpu"
            return "mps"
        else:
            return "cpu"

    @staticmethod
    def is_sparse_api_supported():
        if not torch.backends.mps.is_available():
            return False

        try:
            device = torch.device("mps")
            sparse_tensor = torch.sparse_coo_tensor(
                indices=torch.tensor([[0, 1], [2, 3]]),
                values=torch.tensor([1, 2]),
                size=(4, 4),
                device=device
            )
            return True
        except RuntimeError:
            return False

    @staticmethod
    def release_cuda_memory():
        """Release memory"""
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            torch.cuda.reset_max_memory_allocated()

    @staticmethod
    def remove_input_files(file_paths: List[str]):
        """Remove gradio cached files"""
        if not file_paths:
            return

        for file_path in file_paths:
            if file_path and os.path.exists(file_path):
                os.remove(file_path)

    @staticmethod
    def validate_gradio_values(params: TranscriptionPipelineParams):
        """
        Validate gradio specific values that can't be displayed as None in the UI.
        Related issue : https://github.com/gradio-app/gradio/issues/8723
        """
        if params.whisper.lang is None:
            pass
        elif params.whisper.lang == AUTOMATIC_DETECTION:
            params.whisper.lang = None
        else:
            language_code_dict = {value: key for key, value in whisper.tokenizer.LANGUAGES.items()}
            params.whisper.lang = language_code_dict[params.whisper.lang]

        if params.whisper.initial_prompt == GRADIO_NONE_STR:
            params.whisper.initial_prompt = None
        if params.whisper.prefix == GRADIO_NONE_STR:
            params.whisper.prefix = None
        if params.whisper.hotwords == GRADIO_NONE_STR:
            params.whisper.hotwords = None
        if params.whisper.max_new_tokens == GRADIO_NONE_NUMBER_MIN:
            params.whisper.max_new_tokens = None
        if params.whisper.hallucination_silence_threshold == GRADIO_NONE_NUMBER_MIN:
            params.whisper.hallucination_silence_threshold = None
        if params.whisper.language_detection_threshold == GRADIO_NONE_NUMBER_MIN:
            params.whisper.language_detection_threshold = None
        if params.vad.max_speech_duration_s == GRADIO_NONE_NUMBER_MAX:
            params.vad.max_speech_duration_s = float('inf')
        return params

    @staticmethod
    def cache_parameters(
        params: TranscriptionPipelineParams,
        add_timestamp: bool
    ):
        """Cache parameters to the yaml file"""
        cached_params = load_yaml(DEFAULT_PARAMETERS_CONFIG_PATH)
        param_to_cache = params.to_dict()

        cached_yaml = {**cached_params, **param_to_cache}
        cached_yaml["whisper"]["add_timestamp"] = add_timestamp

        supress_token = cached_yaml["whisper"].get("suppress_tokens", None)
        if supress_token and isinstance(supress_token, list):
            cached_yaml["whisper"]["suppress_tokens"] = str(supress_token)

        if cached_yaml["whisper"].get("lang", None) is None:
            cached_yaml["whisper"]["lang"] = AUTOMATIC_DETECTION.unwrap()
        else:
            language_dict = whisper.tokenizer.LANGUAGES
            cached_yaml["whisper"]["lang"] = language_dict[cached_yaml["whisper"]["lang"]]

        if cached_yaml["vad"].get("max_speech_duration_s", float('inf')) == float('inf'):
            cached_yaml["vad"]["max_speech_duration_s"] = GRADIO_NONE_NUMBER_MAX

        if cached_yaml is not None and cached_yaml:
            save_yaml(cached_yaml, DEFAULT_PARAMETERS_CONFIG_PATH)

    @staticmethod
    def resample_audio(audio: Union[str, np.ndarray],
                       new_sample_rate: int = 16000,
                       original_sample_rate: Optional[int] = None,) -> np.ndarray:
        """Resamples audio to 16k sample rate, standard on Whisper model"""
        if isinstance(audio, str):
            audio, original_sample_rate = torchaudio.load(audio)
        else:
            if original_sample_rate is None:
                raise ValueError("original_sample_rate must be provided when audio is numpy array.")
            audio = torch.from_numpy(audio)
        resampler = torchaudio.transforms.Resample(orig_freq=original_sample_rate, new_freq=new_sample_rate)
        resampled_audio = resampler(audio).numpy()
        return resampled_audio