Spaces:
Running
Running
File size: 21,356 Bytes
b72fd8a 50e9f88 b72fd8a 131f180 b72fd8a 4c322cf b72fd8a 6ff3ca6 2a2f7c6 a1b32c1 ada247c a1b32c1 ccbfe76 ada247c 4c322cf b72fd8a a3de454 b72fd8a 7d9eec3 6ff3ca6 7d9eec3 5633565 b72fd8a 5633565 b72fd8a d6e2447 6ff3ca6 d6e2447 b72fd8a 50e9f88 b72fd8a a85dc3c b72fd8a d6e2447 b72fd8a a85dc3c b72fd8a d6e2447 b72fd8a 6e99075 6f6c89b 501c404 e0e906d 595b5f3 9548fb4 e667af9 595b5f3 6f6c89b 501c404 c0bbe98 595b5f3 e0e906d 595b5f3 501c404 a85d7d2 501c404 6e99075 501c404 8c8001e 131f180 501c404 c5d0765 6ff3ca6 131f180 b5773e7 4a23819 b5773e7 131f180 501c404 6a24efd 6ff3ca6 501c404 670baea 501c404 670baea eec0c16 670baea eec0c16 6e99075 501c404 6e99075 501c404 670baea eec0c16 670baea 501c404 595b5f3 501c404 595b5f3 501c404 6e99075 595b5f3 c7ebe8c 595b5f3 6e99075 b72fd8a a85dc3c b72fd8a 482e6f7 4ceaed1 b72fd8a f6adc1d b72fd8a 482e6f7 501c404 b72fd8a 482e6f7 f6adc1d dbca1ee 6bc716a f6adc1d b72fd8a 6e99075 6bc716a b72fd8a 6f6c89b 482e6f7 b72fd8a 6bc716a a1b32c1 482e6f7 b72fd8a a1b32c1 b72fd8a 5f193dc b72fd8a 46f7c1b b72fd8a a85dc3c b72fd8a 482e6f7 5f193dc b72fd8a aad17fa b72fd8a 482e6f7 595b5f3 b72fd8a 482e6f7 b72fd8a 6e99075 b72fd8a aad17fa 482e6f7 b72fd8a a1b32c1 482e6f7 b72fd8a 5f193dc b72fd8a 46f7c1b b72fd8a a85dc3c b72fd8a 482e6f7 5f193dc b72fd8a 482e6f7 595b5f3 b72fd8a 482e6f7 b72fd8a 6e99075 b72fd8a 6f6c89b 482e6f7 b72fd8a a1b32c1 482e6f7 b72fd8a a1b32c1 b72fd8a f57fb14 5f193dc b72fd8a 46f7c1b b72fd8a f421dd9 b72fd8a 50e9f88 87cbb02 50e9f88 b39eb49 50e9f88 b39eb49 50e9f88 b72fd8a a3de454 ca772aa 57b2878 b72fd8a 57b2878 ca772aa 9820e0f 57b2878 b72fd8a b5773e7 b72fd8a b5773e7 b72fd8a b6032b5 e862b08 a85d7d2 e862b08 a85d7d2 e862b08 d5e37cc e862b08 2a2f7c6 e862b08 2a2f7c6 e862b08 2a2f7c6 e862b08 2a2f7c6 e862b08 2a2f7c6 e862b08 2a2f7c6 e862b08 2a2f7c6 aa98cf2 e862b08 b6032b5 6f6c89b 501c404 6f6c89b e862b08 813ca79 501c404 6f6c89b b6032b5 e862b08 c7ebe8c e862b08 d41e01c c7ebe8c 19e342a 2a2f7c6 19e342a e862b08 131f180 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 |
import os
import whisper
import ctranslate2
import gradio as gr
import torchaudio
from abc import ABC, abstractmethod
from typing import BinaryIO, Union, Tuple, List
import numpy as np
from datetime import datetime
from faster_whisper.vad import VadOptions
from modules.uvr.music_separator import MusicSeparator
from modules.utils.paths import (WHISPER_MODELS_DIR, DIARIZATION_MODELS_DIR, OUTPUT_DIR, DEFAULT_PARAMETERS_CONFIG_PATH,
UVR_MODELS_DIR)
from modules.utils.constants import *
from modules.utils.subtitle_manager import *
from modules.utils.youtube_manager import get_ytdata, get_ytaudio
from modules.utils.files_manager import get_media_files, format_gradio_files, load_yaml, save_yaml, read_file
from modules.whisper.data_classes import *
from modules.diarize.diarizer import Diarizer
from modules.vad.silero_vad import SileroVAD
class BaseTranscriptionPipeline(ABC):
def __init__(self,
model_dir: str = WHISPER_MODELS_DIR,
diarization_model_dir: str = DIARIZATION_MODELS_DIR,
uvr_model_dir: str = UVR_MODELS_DIR,
output_dir: str = OUTPUT_DIR,
):
self.model_dir = model_dir
self.output_dir = output_dir
os.makedirs(self.output_dir, exist_ok=True)
os.makedirs(self.model_dir, exist_ok=True)
self.diarizer = Diarizer(
model_dir=diarization_model_dir
)
self.vad = SileroVAD()
self.music_separator = MusicSeparator(
model_dir=uvr_model_dir,
output_dir=os.path.join(output_dir, "UVR")
)
self.model = None
self.current_model_size = None
self.available_models = whisper.available_models()
self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
self.translatable_models = ["large", "large-v1", "large-v2", "large-v3"]
self.device = self.get_device()
self.available_compute_types = self.get_available_compute_type()
self.current_compute_type = self.get_compute_type()
@abstractmethod
def transcribe(self,
audio: Union[str, BinaryIO, np.ndarray],
progress: gr.Progress = gr.Progress(),
*whisper_params,
):
"""Inference whisper model to transcribe"""
pass
@abstractmethod
def update_model(self,
model_size: str,
compute_type: str,
progress: gr.Progress = gr.Progress()
):
"""Initialize whisper model"""
pass
def run(self,
audio: Union[str, BinaryIO, np.ndarray],
progress: gr.Progress = gr.Progress(),
add_timestamp: bool = True,
*pipeline_params,
) -> Tuple[List[Segment], float]:
"""
Run transcription with conditional pre-processing and post-processing.
The VAD will be performed to remove noise from the audio input in pre-processing, if enabled.
The diarization will be performed in post-processing, if enabled.
Due to the integration with gradio, the parameters have to be specified with a `*` wildcard.
Parameters
----------
audio: Union[str, BinaryIO, np.ndarray]
Audio input. This can be file path or binary type.
progress: gr.Progress
Indicator to show progress directly in gradio.
add_timestamp: bool
Whether to add a timestamp at the end of the filename.
*pipeline_params: tuple
Parameters for the transcription pipeline. This will be dealt with "TranscriptionPipelineParams" data class.
This must be provided as a List with * wildcard because of the integration with gradio.
See more info at : https://github.com/gradio-app/gradio/issues/2471
Returns
----------
segments_result: List[Segment]
list of Segment that includes start, end timestamps and transcribed text
elapsed_time: float
elapsed time for running
"""
params = TranscriptionPipelineParams.from_list(list(pipeline_params))
params = self.validate_gradio_values(params)
bgm_params, vad_params, whisper_params, diarization_params = params.bgm_separation, params.vad, params.whisper, params.diarization
if bgm_params.is_separate_bgm:
music, audio, _ = self.music_separator.separate(
audio=audio,
model_name=bgm_params.model_size,
device=bgm_params.device,
segment_size=bgm_params.segment_size,
save_file=bgm_params.save_file,
progress=progress
)
if audio.ndim >= 2:
audio = audio.mean(axis=1)
if self.music_separator.audio_info is None:
origin_sample_rate = 16000
else:
origin_sample_rate = self.music_separator.audio_info.sample_rate
audio = self.resample_audio(audio=audio, original_sample_rate=origin_sample_rate)
if bgm_params.enable_offload:
self.music_separator.offload()
if vad_params.vad_filter:
vad_options = VadOptions(
threshold=vad_params.threshold,
min_speech_duration_ms=vad_params.min_speech_duration_ms,
max_speech_duration_s=vad_params.max_speech_duration_s,
min_silence_duration_ms=vad_params.min_silence_duration_ms,
speech_pad_ms=vad_params.speech_pad_ms
)
vad_processed, speech_chunks = self.vad.run(
audio=audio,
vad_parameters=vad_options,
progress=progress
)
if vad_processed.size > 0:
audio = vad_processed
else:
vad_params.vad_filter = False
result, elapsed_time = self.transcribe(
audio,
progress,
*whisper_params.to_list()
)
if vad_params.vad_filter:
result = self.vad.restore_speech_timestamps(
segments=result,
speech_chunks=speech_chunks,
)
if diarization_params.is_diarize:
result, elapsed_time_diarization = self.diarizer.run(
audio=audio,
use_auth_token=diarization_params.hf_token,
transcribed_result=result,
device=diarization_params.device
)
elapsed_time += elapsed_time_diarization
self.cache_parameters(
params=params,
add_timestamp=add_timestamp
)
return result, elapsed_time
def transcribe_file(self,
files: Optional[List] = None,
input_folder_path: Optional[str] = None,
file_format: str = "SRT",
add_timestamp: bool = True,
progress=gr.Progress(),
*pipeline_params,
) -> Tuple[str, List]:
"""
Write subtitle file from Files
Parameters
----------
files: list
List of files to transcribe from gr.Files()
input_folder_path: str
Input folder path to transcribe from gr.Textbox(). If this is provided, `files` will be ignored and
this will be used instead.
file_format: str
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
add_timestamp: bool
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the subtitle filename.
progress: gr.Progress
Indicator to show progress directly in gradio.
*pipeline_params: tuple
Parameters for the transcription pipeline. This will be dealt with "TranscriptionPipelineParams" data class
Returns
----------
result_str:
Result of transcription to return to gr.Textbox()
result_file_path:
Output file path to return to gr.Files()
"""
try:
params = TranscriptionPipelineParams.from_list(list(pipeline_params))
writer_options = {
"highlight_words": True if params.whisper.word_timestamps else False
}
if input_folder_path:
files = get_media_files(input_folder_path)
if isinstance(files, str):
files = [files]
if files and isinstance(files[0], gr.utils.NamedString):
files = [file.name for file in files]
files_info = {}
for file in files:
transcribed_segments, time_for_task = self.run(
file,
progress,
add_timestamp,
*pipeline_params,
)
file_name, file_ext = os.path.splitext(os.path.basename(file))
subtitle, file_path = generate_file(
output_dir=self.output_dir,
output_file_name=file_name,
output_format=file_format,
result=transcribed_segments,
add_timestamp=add_timestamp,
**writer_options
)
files_info[file_name] = {"subtitle": read_file(file_path), "time_for_task": time_for_task, "path": file_path}
total_result = ''
total_time = 0
for file_name, info in files_info.items():
total_result += '------------------------------------\n'
total_result += f'{file_name}\n\n'
total_result += f'{info["subtitle"]}'
total_time += info["time_for_task"]
result_str = f"Done in {self.format_time(total_time)}! Subtitle is in the outputs folder.\n\n{total_result}"
result_file_path = [info['path'] for info in files_info.values()]
return result_str, result_file_path
except Exception as e:
print(f"Error transcribing file: {e}")
raise
finally:
self.release_cuda_memory()
def transcribe_mic(self,
mic_audio: str,
file_format: str = "SRT",
add_timestamp: bool = True,
progress=gr.Progress(),
*pipeline_params,
) -> Tuple[str, str]:
"""
Write subtitle file from microphone
Parameters
----------
mic_audio: str
Audio file path from gr.Microphone()
file_format: str
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
add_timestamp: bool
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
progress: gr.Progress
Indicator to show progress directly in gradio.
*pipeline_params: tuple
Parameters related with whisper. This will be dealt with "WhisperParameters" data class
Returns
----------
result_str:
Result of transcription to return to gr.Textbox()
result_file_path:
Output file path to return to gr.Files()
"""
try:
params = TranscriptionPipelineParams.from_list(list(pipeline_params))
writer_options = {
"highlight_words": True if params.whisper.word_timestamps else False
}
progress(0, desc="Loading Audio..")
transcribed_segments, time_for_task = self.run(
mic_audio,
progress,
add_timestamp,
*pipeline_params,
)
progress(1, desc="Completed!")
file_name = "Mic"
subtitle, file_path = generate_file(
output_dir=self.output_dir,
output_file_name=file_name,
output_format=file_format,
result=transcribed_segments,
add_timestamp=add_timestamp,
**writer_options
)
result_str = f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
return result_str, file_path
except Exception as e:
print(f"Error transcribing mic: {e}")
raise
finally:
self.release_cuda_memory()
def transcribe_youtube(self,
youtube_link: str,
file_format: str = "SRT",
add_timestamp: bool = True,
progress=gr.Progress(),
*pipeline_params,
) -> Tuple[str, str]:
"""
Write subtitle file from Youtube
Parameters
----------
youtube_link: str
URL of the Youtube video to transcribe from gr.Textbox()
file_format: str
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
add_timestamp: bool
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
progress: gr.Progress
Indicator to show progress directly in gradio.
*pipeline_params: tuple
Parameters related with whisper. This will be dealt with "WhisperParameters" data class
Returns
----------
result_str:
Result of transcription to return to gr.Textbox()
result_file_path:
Output file path to return to gr.Files()
"""
try:
params = TranscriptionPipelineParams.from_list(list(pipeline_params))
writer_options = {
"highlight_words": True if params.whisper.word_timestamps else False
}
progress(0, desc="Loading Audio from Youtube..")
yt = get_ytdata(youtube_link)
audio = get_ytaudio(yt)
transcribed_segments, time_for_task = self.run(
audio,
progress,
add_timestamp,
*pipeline_params,
)
progress(1, desc="Completed!")
file_name = safe_filename(yt.title)
subtitle, file_path = generate_file(
output_dir=self.output_dir,
output_file_name=file_name,
output_format=file_format,
result=transcribed_segments,
add_timestamp=add_timestamp,
**writer_options
)
result_str = f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
if os.path.exists(audio):
os.remove(audio)
return result_str, file_path
except Exception as e:
print(f"Error transcribing youtube: {e}")
raise
finally:
self.release_cuda_memory()
def get_compute_type(self):
if "float16" in self.available_compute_types:
return "float16"
if "float32" in self.available_compute_types:
return "float32"
else:
return self.available_compute_types[0]
def get_available_compute_type(self):
if self.device == "cuda":
return list(ctranslate2.get_supported_compute_types("cuda"))
else:
return list(ctranslate2.get_supported_compute_types("cpu"))
@staticmethod
def format_time(elapsed_time: float) -> str:
"""
Get {hours} {minutes} {seconds} time format string
Parameters
----------
elapsed_time: str
Elapsed time for transcription
Returns
----------
Time format string
"""
hours, rem = divmod(elapsed_time, 3600)
minutes, seconds = divmod(rem, 60)
time_str = ""
if hours:
time_str += f"{hours} hours "
if minutes:
time_str += f"{minutes} minutes "
seconds = round(seconds)
time_str += f"{seconds} seconds"
return time_str.strip()
@staticmethod
def get_device():
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
if not BaseTranscriptionPipeline.is_sparse_api_supported():
# Device `SparseMPS` is not supported for now. See : https://github.com/pytorch/pytorch/issues/87886
return "cpu"
return "mps"
else:
return "cpu"
@staticmethod
def is_sparse_api_supported():
if not torch.backends.mps.is_available():
return False
try:
device = torch.device("mps")
sparse_tensor = torch.sparse_coo_tensor(
indices=torch.tensor([[0, 1], [2, 3]]),
values=torch.tensor([1, 2]),
size=(4, 4),
device=device
)
return True
except RuntimeError:
return False
@staticmethod
def release_cuda_memory():
"""Release memory"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
@staticmethod
def remove_input_files(file_paths: List[str]):
"""Remove gradio cached files"""
if not file_paths:
return
for file_path in file_paths:
if file_path and os.path.exists(file_path):
os.remove(file_path)
@staticmethod
def validate_gradio_values(params: TranscriptionPipelineParams):
"""
Validate gradio specific values that can't be displayed as None in the UI.
Related issue : https://github.com/gradio-app/gradio/issues/8723
"""
if params.whisper.lang is None:
pass
elif params.whisper.lang == AUTOMATIC_DETECTION:
params.whisper.lang = None
else:
language_code_dict = {value: key for key, value in whisper.tokenizer.LANGUAGES.items()}
params.whisper.lang = language_code_dict[params.whisper.lang]
if params.whisper.initial_prompt == GRADIO_NONE_STR:
params.whisper.initial_prompt = None
if params.whisper.prefix == GRADIO_NONE_STR:
params.whisper.prefix = None
if params.whisper.hotwords == GRADIO_NONE_STR:
params.whisper.hotwords = None
if params.whisper.max_new_tokens == GRADIO_NONE_NUMBER_MIN:
params.whisper.max_new_tokens = None
if params.whisper.hallucination_silence_threshold == GRADIO_NONE_NUMBER_MIN:
params.whisper.hallucination_silence_threshold = None
if params.whisper.language_detection_threshold == GRADIO_NONE_NUMBER_MIN:
params.whisper.language_detection_threshold = None
if params.vad.max_speech_duration_s == GRADIO_NONE_NUMBER_MAX:
params.vad.max_speech_duration_s = float('inf')
return params
@staticmethod
def cache_parameters(
params: TranscriptionPipelineParams,
add_timestamp: bool
):
"""Cache parameters to the yaml file"""
cached_params = load_yaml(DEFAULT_PARAMETERS_CONFIG_PATH)
param_to_cache = params.to_dict()
cached_yaml = {**cached_params, **param_to_cache}
cached_yaml["whisper"]["add_timestamp"] = add_timestamp
supress_token = cached_yaml["whisper"].get("suppress_tokens", None)
if supress_token and isinstance(supress_token, list):
cached_yaml["whisper"]["suppress_tokens"] = str(supress_token)
if cached_yaml["whisper"].get("lang", None) is None:
cached_yaml["whisper"]["lang"] = AUTOMATIC_DETECTION.unwrap()
else:
language_dict = whisper.tokenizer.LANGUAGES
cached_yaml["whisper"]["lang"] = language_dict[cached_yaml["whisper"]["lang"]]
if cached_yaml["vad"].get("max_speech_duration_s", float('inf')) == float('inf'):
cached_yaml["vad"]["max_speech_duration_s"] = GRADIO_NONE_NUMBER_MAX
if cached_yaml is not None and cached_yaml:
save_yaml(cached_yaml, DEFAULT_PARAMETERS_CONFIG_PATH)
@staticmethod
def resample_audio(audio: Union[str, np.ndarray],
new_sample_rate: int = 16000,
original_sample_rate: Optional[int] = None,) -> np.ndarray:
"""Resamples audio to 16k sample rate, standard on Whisper model"""
if isinstance(audio, str):
audio, original_sample_rate = torchaudio.load(audio)
else:
if original_sample_rate is None:
raise ValueError("original_sample_rate must be provided when audio is numpy array.")
audio = torch.from_numpy(audio)
resampler = torchaudio.transforms.Resample(orig_freq=original_sample_rate, new_freq=new_sample_rate)
resampled_audio = resampler(audio).numpy()
return resampled_audio
|