Spaces:
Runtime error
Runtime error
Improve code
Browse files
app.py
CHANGED
@@ -1,23 +1,10 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
from numpy import asarray
|
4 |
-
import tensorflow as tf
|
5 |
from transformers import pipeline
|
6 |
|
7 |
-
inception_net = tf.keras.applications.MobileNetV2()
|
8 |
-
answer = requests.get("https://git.io/JJkYN")
|
9 |
-
labels =answer.text.split("\n")
|
10 |
-
|
11 |
transcribe = pipeline("automatic-speech-recognition", model = "facebook/wav2vec2-large-xlsr-53-spanish")
|
12 |
classifier = pipeline("text-classification", model = "pysentimiento/robertuito-sentiment-analysis")
|
13 |
-
|
14 |
-
def classify_image(inp):
|
15 |
-
inp = asarray(inp.resize((224, 224)))
|
16 |
-
inp = inp.reshape((-1,) + inp.shape)
|
17 |
-
inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp)
|
18 |
-
prediction = inception_net.predict(inp).flatten()
|
19 |
-
confidences = {labels[k]: float(prediction[k]) for k in range(1000)}
|
20 |
-
return confidences
|
21 |
|
22 |
def audio_to_text(audio):
|
23 |
text = transcribe(audio)["text"]
|
@@ -25,7 +12,13 @@ def audio_to_text(audio):
|
|
25 |
|
26 |
def text_to_sentiment(text):
|
27 |
return classifier(text)[0]["label"]
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
demo = gr.Blocks()
|
30 |
|
31 |
with demo:
|
|
|
1 |
import gradio as gr
|
2 |
+
from PIL import Image
|
|
|
|
|
3 |
from transformers import pipeline
|
4 |
|
|
|
|
|
|
|
|
|
5 |
transcribe = pipeline("automatic-speech-recognition", model = "facebook/wav2vec2-large-xlsr-53-spanish")
|
6 |
classifier = pipeline("text-classification", model = "pysentimiento/robertuito-sentiment-analysis")
|
7 |
+
image_classifier = pipeline("image-classification", model="microsoft/swin-tiny-patch4-window7-224")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
def audio_to_text(audio):
|
10 |
text = transcribe(audio)["text"]
|
|
|
12 |
|
13 |
def text_to_sentiment(text):
|
14 |
return classifier(text)[0]["label"]
|
15 |
+
|
16 |
+
def classify_image(image):
|
17 |
+
image = Image.fromarray(image.astype('uint8'), 'RGB')
|
18 |
+
answers = image_classifier(image)
|
19 |
+
labels = {answer["label"]: answer["score"] for answer in answers}
|
20 |
+
return labels
|
21 |
+
|
22 |
demo = gr.Blocks()
|
23 |
|
24 |
with demo:
|