marcela9409's picture
Add missing code
e06fb68 verified
raw
history blame
1.7 kB
import gradio as gr
import requests
from numpy import asarray
import tensorflow as tf
from transformers import pipeline
inception_net = tf.keras.applications.MobileNetV2()
answer = requests.get("https://git.io/JJkYN")
labels =answer.text.split("\n")
def classify_image(inp):
inp = asarray(inp.resize((224, 224)))
inp = inp.reshape((-1,) + inp.shape)
inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp)
prediction = inception_net.predict(inp).flatten()
confidences = {labels[k]: float(prediction[k]) for k in range(1000)}
return confidences
def audio_to_text(audio):
text = transcribe(audio)["text"]
return text
def text_to_sentiment(text):
return classifier(text)[0]["label"]
demo = gr.Blocks()
with demo:
gr.Markdown("Example with Gradio Blocks")
with gr.Tabs():
with gr.TabItem("Transcribe audio in Spanish"):
with gr.Row():
audio = gr.Audio(sources="microphone", type="filepath")
transcription = gr.Textbox()
transcribeButton = gr.Button("Transcribe")
with gr.TabItem("Sentiment analysis in English and Spanish"):
with gr.Row():
text = gr.Textbox()
label = gr.Label()
sentimentButton = gr.Button("Calculate sentiment")
with gr.TabItem("Image Classification"):
with gr.Row():
image = gr.Image(label="Upload an image here")
label_image = gr.Label(num_top_classes=3)
classifyButton = gr.Button("Classify image")
transcribeButton.click(audio_to_text, inputs = audio, outputs=transcription)
sentimentButton.click(text_to_sentiment, inputs=text, outputs=label)
classifyButton. click(classify_image, inputs=image, outputs=label_image)
demo.launch()