Spaces:
Runtime error
Runtime error
import requests | |
from numpy import asarray | |
import gradio as gr | |
from transformers import pipeline | |
answer = requests.get("https://git.io/JJkYN") | |
labels =answer.text.split("\n") | |
def classify_image(inp): | |
inp = asarray(inp.resize((224, 224))) | |
inp = inp.reshape((-1,) + inp.shape) | |
inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp) | |
prediction = inception_net.predict(inp).flatten() | |
confidences = {labels[k]: float(prediction[k]) for k in range(1000)} | |
return confidences | |
def audio_to_text(audio): | |
text = transcribe(audio)["text"] | |
return text | |
def text_to_sentiment(text): | |
return classifier(text)[0]["label"] | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown("Example with Gradio Blocks") | |
with gr.Tabs(): | |
with gr.TabItem("Transcribe audio in Spanish"): | |
with gr.Row(): | |
audio = gr.Audio(sources="microphone", type="filepath") | |
transcription = gr.Textbox() | |
transcribeButton = gr.Button("Transcribe") | |
with gr.TabItem("Sentiment analysis in English and Spanish"): | |
with gr.Row(): | |
text = gr.Textbox() | |
label = gr.Label() | |
sentimentButton = gr.Button("Calculate sentiment") | |
with gr.TabItem("Image Classification"): | |
with gr.Row(): | |
image = gr.Image(label="Upload an image here") | |
label_image = gr.Label(num_top_classes=3) | |
classifyButton = gr.Button("Classify image") | |
transcribeButton.click(audio_to_text, inputs = audio, outputs=transcription) | |
sentimentButton.click(text_to_sentiment, inputs=text, outputs=label) | |
classifyButton. click(classify_image, inputs=image, outputs=label_image) | |
demo.launch() | |