MapItAnywhereModel / mia /fpv /utils_sfm.py
hocherie
add files
4187c6f
raw
history blame
5.88 kB
# Copied from OrienterNet
# Copyright (c) Meta Platforms, Inc. and affiliates.
from typing import List, Tuple
import cv2
import numpy as np
from opensfm import features
from opensfm.pygeometry import Camera, compute_camera_mapping, Pose
from opensfm.pymap import Shot
from scipy.spatial.transform import Rotation
def keyframe_selection(shots: List[Shot], min_dist: float = 4) -> List[int]:
camera_centers = np.stack([shot.pose.get_origin() for shot in shots], 0)
distances = np.linalg.norm(np.diff(camera_centers, axis=0), axis=1)
selected = [0]
cum = 0
for i in range(1, len(camera_centers)):
cum += distances[i - 1]
if cum >= min_dist:
selected.append(i)
cum = 0
return selected
def perspective_camera_from_pano(camera: Camera, size: int) -> Camera:
camera_new = Camera.create_perspective(0.5, 0, 0)
camera_new.height = camera_new.width = size
camera_new.id = "perspective_from_pano"
return camera_new
def scale_camera(camera: Camera, max_size: int) -> Camera:
height = camera.height
width = camera.width
factor = max_size / float(max(height, width))
if factor >= 1:
return camera
camera.width = int(round(width * factor))
camera.height = int(round(height * factor))
return camera
class PanoramaUndistorter:
def __init__(self, camera_pano: Camera, camera_new: Camera):
w, h = camera_new.width, camera_new.height
self.shape = (h, w)
dst_y, dst_x = np.indices(self.shape).astype(np.float32)
dst_pixels_denormalized = np.column_stack([dst_x.ravel(), dst_y.ravel()])
dst_pixels = features.normalized_image_coordinates(
dst_pixels_denormalized, w, h
)
self.dst_bearings = camera_new.pixel_bearing_many(dst_pixels)
self.camera_pano = camera_pano
self.camera_perspective = camera_new
def __call__(
self, image: np.ndarray, panoshot: Shot, perspectiveshot: Shot
) -> np.ndarray:
# Rotate to panorama reference frame
rotation = np.dot(
panoshot.pose.get_rotation_matrix(),
perspectiveshot.pose.get_rotation_matrix().T,
)
rotated_bearings = np.dot(self.dst_bearings, rotation.T)
# Project to panorama pixels
src_pixels = panoshot.camera.project_many(rotated_bearings)
src_pixels_denormalized = features.denormalized_image_coordinates(
src_pixels, image.shape[1], image.shape[0]
)
src_pixels_denormalized.shape = self.shape + (2,)
# Sample color
x = src_pixels_denormalized[..., 0].astype(np.float32)
y = src_pixels_denormalized[..., 1].astype(np.float32)
colors = cv2.remap(image, x, y, cv2.INTER_LINEAR, borderMode=cv2.BORDER_WRAP)
return colors
class CameraUndistorter:
def __init__(self, camera_distorted: Camera, camera_new: Camera):
self.maps = compute_camera_mapping(
camera_distorted,
camera_new,
camera_distorted.width,
camera_distorted.height,
)
self.camera_perspective = camera_new
self.camera_distorted = camera_distorted
def __call__(self, image: np.ndarray) -> np.ndarray:
assert image.shape[:2] == (
self.camera_distorted.height,
self.camera_distorted.width,
)
undistorted = cv2.remap(image, *self.maps, cv2.INTER_LINEAR)
resized = cv2.resize(
undistorted,
(self.camera_perspective.width, self.camera_perspective.height),
interpolation=cv2.INTER_AREA,
)
return resized
def render_panorama(
shot: Shot,
pano: np.ndarray,
undistorter: PanoramaUndistorter,
offset: float = 0.0,
) -> Tuple[List[Shot], List[np.ndarray]]:
yaws = [0, 90, 180, 270]
suffixes = ["front", "left", "back", "right"]
images = []
shots = []
# To reduce aliasing, since cv2.remap does not support area samplimg,
# we first resize with anti-aliasing.
h, w = undistorter.shape
h, w = (w * 2, w * 4) # assuming 90deg FOV
pano_resized = cv2.resize(pano, (w, h), interpolation=cv2.INTER_AREA)
for yaw, suffix in zip(yaws, suffixes):
R_pano2persp = Rotation.from_euler("Y", yaw + offset, degrees=True).as_matrix()
name = f"{shot.id}_{suffix}"
shot_new = Shot(
name,
undistorter.camera_perspective,
Pose.compose(Pose(R_pano2persp), shot.pose),
)
shot_new.metadata = shot.metadata
perspective = undistorter(pano_resized, shot, shot_new)
images.append(perspective)
shots.append(shot_new)
return shots, images
def undistort_camera(
shot: Shot, image: np.ndarray, undistorter: CameraUndistorter
) -> Tuple[Shot, np.ndarray]:
name = f"{shot.id}_undistorted"
shot_out = Shot(name, undistorter.camera_perspective, shot.pose)
shot_out.metadata = shot.metadata
undistorted = undistorter(image)
return shot_out, undistorted
def undistort_shot(
image_raw: np.ndarray,
shot_orig: Shot,
undistorter,
pano_offset: float,
) -> Tuple[List[Shot], List[np.ndarray]]:
camera = shot_orig.camera
if image_raw.shape[:2] != (camera.height, camera.width):
raise ValueError(
shot_orig.id, image_raw.shape[:2], (camera.height, camera.width)
)
if camera.is_panorama(camera.projection_type):
shots, undistorted = render_panorama(
shot_orig, image_raw, undistorter, offset=pano_offset
)
elif camera.projection_type in ("perspective", "fisheye"):
shot, undistorted = undistort_camera(shot_orig, image_raw, undistorter)
shots, undistorted = [shot], [undistorted]
else:
raise NotImplementedError(camera.projection_type)
return shots, undistorted