Spaces:
Building
Building
File size: 18,883 Bytes
4187c6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
"""python3.9 -m mia.fpv.get_fpv --cfg mia/conf/example.yaml"""
import argparse
import itertools
import traceback
from functools import partial
from typing import Dict
from pathlib import Path
import tracemalloc
import copy
import json
import numpy as np
import asyncio
from tqdm import tqdm
from omegaconf import OmegaConf
import pandas as pd
from .. import logger
from .geo import Projection
from .download import (
MapillaryDownloader,
fetch_image_infos,
fetch_images_pixels,
get_city_boundary,
get_tiles_from_boundary,
)
from .prepare import process_sequence, default_cfg
from .filters import in_shape_filter, FilterPipeline
class JSONEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
elif isinstance(obj, np.generic):
return obj.item()
return json.JSONEncoder.default(self, obj)
def write_json(path, data):
with open(path, "w") as f:
json.dump(data, f, cls=JSONEncoder)
def get_token(token: str) -> str:
if Path(token).is_file():
logger.info(f"Reading token from file {token}")
with open(token, 'r') as file:
token = file.read().strip()
if not token.startswith("MLY"):
logger.fatal(f"The token '{token}' is invalid")
exit(1)
else:
logger.info(f"Using token {token}")
return token
def fetch_city_boundaries(cities: list):
"""
Args:
cities: List of dictionaries describing the city/region to fetch in the fpv.yaml format.
"""
data = []
pbar = tqdm(cities)
for loc_info in pbar:
loc_fmt = loc_info["name"]
if "state" in loc_info:
loc_fmt = f"{loc_fmt}, {loc_info['state']}"
else:
loc_info["state"] = ""
if "country" in loc_info:
loc_fmt = f"{loc_fmt}, {loc_info['country']}"
else:
loc_info["country"] = ""
pbar.set_description(f"Getting boundary for {loc_fmt}")
entry = copy.copy(dict(loc_info))
get_city_boundary_ = partial(get_city_boundary, loc_info["name"], loc_info["state"], loc_info["country"])
if "bound_type" not in loc_info:
assert "sequence_ids" in loc_info
raise NotImplementedError()
elif loc_info["bound_type"] == "custom_bbox":
assert "custom_bbox" in loc_info
entry["bbox"] = dict(zip(["west", "south", "east", "north"],
[float(x) for x in loc_info["custom_bbox"].split(",")]))
elif loc_info["bound_type"] == "auto_shape":
entry["bbox"], entry["shape"] = get_city_boundary_(fetch_shape=True)
elif loc_info["bound_type"] == "auto_bbox":
entry["bbox"] = get_city_boundary_(fetch_shape=False)
elif loc_info["bound_type"] == "custom_size":
assert "custom_size" in loc_info
custom_size = loc_info["custom_size"]
bbox = get_city_boundary_(fetch_shape=False)
# Calculation below is obviously not very accurate.
# Good enough for small bounding boxes
bbox_center = [(bbox['west'] + bbox['east'])/2, (bbox['south'] + bbox['north'])/2]
bbox['west'] = bbox_center[0] - custom_size / (111.32*np.cos(np.deg2rad(bbox_center[1])))
bbox['east'] = bbox_center[0] + custom_size / (111.32*np.cos(np.deg2rad(bbox_center[1])))
bbox['south'] = bbox_center[1] - custom_size / 111.32
bbox['north'] = bbox_center[1] + custom_size / 111.32
entry["bbox"] = bbox
entry["custom_size"] = custom_size
else:
raise Exception(f"Unsupported bound_type type '{loc_info['bound_type']}'")
data.append(entry)
return data
def geojson_feature_list_to_pandas(feature_list, split_coords=True):
t = pd.json_normalize(feature_list)
cols_to_drop = ["type", "geometry.type", "properties.organization_id", "computed_geometry.type"]
if split_coords:
t[['geometry.long','geometry.lat']] = pd.DataFrame(t["geometry.coordinates"].tolist(), index=t.index)
# Computed geometry maybe nan if its not available so we check if the value could be a nan (a float type)
if "computed_geometry.coordinates" in t.columns:
t["computed_geometry.long"] = t["computed_geometry.coordinates"].map(lambda x: (x if isinstance(x, float) else x[0]) )
t["computed_geometry.lat"] = t["computed_geometry.coordinates"].map(lambda x: (x if isinstance(x, float) else x[1]) )
t.drop(columns=cols_to_drop, inplace=True, errors="ignore")
t.columns = t.columns.str.removeprefix('properties.')
t["id"] = t["id"].astype(str)
return t
def parse_image_points_json_data(rd: dict, combine=True) -> pd.DataFrame:
"""
Parse the json in to a pandas dataframe
"""
df_dict = dict()
for tile, feature_list in tqdm(rd.items(), total=len(rd)):
if len(feature_list) == 0:
continue
df_dict[tile] = geojson_feature_list_to_pandas(feature_list)
if combine:
logger.info(f"Joining all dataframes into one.")
return pd.concat(df_dict.values())
else:
return df_dict
def log_memory_usage():
current, peak = tracemalloc.get_traced_memory()
current_gb = current / 10**9
peak_gb = peak / 10**9
logger.info(f"Current memory: {current_gb:.3f} GB; Peak was {peak_gb:.3f} GB")
def main(args, cfgs):
pipeline = FilterPipeline.load_from_yaml(cfgs.fpv_options.filter_pipeline_cfg)
# setup the mapillary downloader
tracemalloc.start()
token = get_token(args.token)
downloader = MapillaryDownloader(token)
loop = asyncio.get_event_loop()
# setup file structure
dataset_dir = Path(cfgs.dataset_dir)
dataset_dir.mkdir(exist_ok=True, parents=True)
# Fetch the bounds for the cities
logger.info(f"Auto fetching boundaries for cities if needed.")
cities_bounds_info = fetch_city_boundaries(cfgs.cities)
log_memory_usage()
# loop through the cities and collect the mapillary data (images, metadata, etc.)
for city_boundary_info in cities_bounds_info:
# Clear out dataframes since we may use None checks to see if we need
# to load the dataframe for a particular stage
df = None
df_meta = None
df_meta_filtered = None
df_meta_filtered_processed = None
logger.info(f"Processing {city_boundary_info['name']}")
# setup the directories
location_name = city_boundary_info['name'].lower().replace(" ", "_")
location_dir = dataset_dir / location_name
infos_dir = location_dir / "image_infos_chunked"
raw_image_dir = location_dir / "images_raw"
out_image_dir = location_dir / "images"
for d in (infos_dir, raw_image_dir, out_image_dir, location_dir):
if not d.exists():
logger.info(f"{d} does not exist. Creating directory {d}")
d.mkdir(parents=True, exist_ok=True)
write_json(location_dir / "boundary_info.json", city_boundary_info)
# Stage 1: collect the id of the images in the specified bounding box
if cfgs.fpv_options.stages.get_image_points_from_tiles:
logger.info(f"[{location_name}] Stage 1 (Downloading image IDs) ------------------")
tiles = get_tiles_from_boundary(city_boundary_info)
logger.info(f"[{location_name}] Found {len(tiles)} zoom-14 tiles for this boundary. Starting image point download")
image_points_response = loop.run_until_complete(
downloader.get_tiles_image_points(tiles)
)
if image_points_response is None:
logger.warn(f"[{location_name}] No image points found in boundary. Skipping city")
continue
write_json(location_dir / 'images_points_dump.json', image_points_response)
# parse the data into a geopandas dataframe
logger.info(f"[{location_name}] Parsing image point json data into dataframe")
df = parse_image_points_json_data(image_points_response)
# Filter if needed
if city_boundary_info["bound_type"] == "auto_shape":
old_count = df.shape[0]
df = df[in_shape_filter(df, city_boundary_info["shape"])]
new_count = df.shape[0]
logger.info(f"[{location_name}] Keeping {new_count}/{old_count} ({new_count/old_count*100:.2f}%) "
"points that are within city boundaries")
df.to_parquet(location_dir / 'image_points.parquet')
# Stage 2: download the metadata
if cfgs.fpv_options.stages.get_metadata:
logger.info(f"[{location_name}] Stage 2 (Downloading Metadata) ------------------")
if df is None:
pq_name = 'image_points.parquet'
df = pd.read_parquet(location_dir / pq_name)
logger.info(f"[{location_name}] Loaded {df.shape[0]} image points from {pq_name}")
log_memory_usage()
# chunk settings
chunk_size = cfgs.fpv_options.metadata_download_chunk_size
num_split = int(np.ceil(df.shape[0] / chunk_size))
logger.info(f"[{location_name}] Splitting the {df.shape[0]} image points into {num_split} chunks of {chunk_size} image points each.")
# check if the metadata chunk has already been downloaded
num_downloaded_chunks = 0
num_of_chunks_in_dir = len(list(infos_dir.glob("image_metadata_chunk_*.parquet")))
df_meta_chunks = list()
df_meta = pd.DataFrame()
if infos_dir.exists() and num_of_chunks_in_dir > 0:
logger.info(f"[{location_name}] Found {len(list(infos_dir.glob('image_metadata_chunk_*.parquet')))} existing metadata chunks.")
downloaded_ids = []
num_downloaded_data_pts = 0
pbar = tqdm(infos_dir.glob("image_metadata_chunk_*.parquet"), total=num_of_chunks_in_dir)
for chunk_fp in pbar:
pbar.set_description(f"Loading {chunk_fp}")
chunk_df = pd.read_parquet(chunk_fp)
df_meta_chunks.append(chunk_df)
num_downloaded_chunks += 1
num_downloaded_data_pts += len(chunk_df)
log_memory_usage()
num_pts_left = df.shape[0] - num_downloaded_data_pts
df_meta = pd.concat(df_meta_chunks)
df_meta_chunks.clear()
df = df[~df["id"].isin(df_meta["id"])]
# some quick checks to make sure the data is consistent
left_num_split = int(np.ceil(df.shape[0] / chunk_size))
# if num_downloaded_chunks != (num_split - left_num_split):
# raise ValueError(f"Number of downloaded chunks {num_downloaded_chunks} does not match the number of chunks {num_split - left_num_split}")
if num_pts_left != len(df):
raise ValueError(f"Number of points left {num_pts_left} does not match the number of points in the dataframe {len(df)}")
if num_pts_left > 0:
logger.info(f"Restarting metadata download with {num_pts_left} points, {left_num_split} chunks left to download.")
# download the metadata
num_split = int(np.ceil(df.shape[0] / chunk_size))
groups = df.groupby(np.arange(len(df.index)) // chunk_size)
for (frame_num, frame) in groups:
frame_num = frame_num + num_downloaded_chunks
logger.info(f"[{location_name}] Fetching metadata for {frame_num+1}/{num_split} chunk of {frame.shape[0]} image points.")
image_ids = frame["id"]
image_infos, num_fail = loop.run_until_complete(
fetch_image_infos(image_ids, downloader, infos_dir)
)
logger.info("%d failures (%.1f%%).", num_fail, 100 * num_fail / len(image_ids))
if num_fail == len(image_ids):
logger.warn(f"[{location_name}] All images failed to be fetched. Skipping next steps")
continue
new_df_meta = geojson_feature_list_to_pandas(image_infos.values())
df_meta_chunks.append(new_df_meta)
new_df_meta.to_parquet(infos_dir / f'image_metadata_chunk_{frame_num}.parquet')
log_memory_usage()
# Combine all new chunks into one DF
df_meta = pd.concat([df_meta] + df_meta_chunks)
df_meta_chunks.clear()
# Some standardization of the data
df_meta["model"] = df_meta["model"].str.lower().str.replace(' ', '').str.replace('_', '')
df_meta["make"] = df_meta["make"].str.lower().str.replace(' ', '').str.replace('_', '')
df_meta.to_parquet(location_dir / 'image_metadata.parquet')
# Stage 3: run filter pipeline
if cfgs.fpv_options.stages.run_filter:
logger.info(f"[{location_name}] Stage 3 (Filtering) ------------------")
if df_meta is None:
pq_name = 'image_metadata.parquet'
df_meta = pd.read_parquet(location_dir / pq_name)
logger.info(f"[{location_name}] Loaded {df_meta.shape[0]} image metadata from {pq_name}")
df_meta_filtered = pipeline(df_meta)
df_meta_filtered.to_parquet(location_dir / f'image_metadata_filtered.parquet')
if df_meta_filtered.shape[0] == 0:
logger.warning(f"[{location_name}] No images to download. Moving on to next location.")
continue
else:
logger.info(f"[{location_name}] {df_meta_filtered.shape[0]} images to download.")
# Stage 4: Download filtered images
if cfgs.fpv_options.stages.download_images:
logger.info(f"[{location_name}] Stage 4 (Downloading Images) ------------------")
if df_meta_filtered is None:
pq_name = f'image_metadata_filtered.parquet'
df_meta_filtered = pd.read_parquet(location_dir / pq_name)
logger.info(f"[{location_name}] Loaded {df_meta_filtered.shape[0]} image metadata from {pq_name}")
log_memory_usage()
# filter out the images that have already been downloaded
downloaded_image_fps = list(raw_image_dir.glob("*.jpg"))
downloaded_image_ids = [fp.stem for fp in downloaded_image_fps]
df_to_download = df_meta_filtered[~df_meta_filtered["id"].isin(downloaded_image_ids)]
logger.info(f"[{location_name}] {len(downloaded_image_ids)} images already downloaded. {df_to_download.shape[0]} images left to download.")
# download the images
image_urls = list(df_to_download.set_index("id")["thumb_2048_url"].items())
if len(image_urls) > 0:
num_fail = loop.run_until_complete(
fetch_images_pixels(image_urls, downloader, raw_image_dir)
)
logger.info("%d failures (%.1f%%).", num_fail, 100 * num_fail / len(image_urls))
# Stage 5: process the sequences
if cfgs.fpv_options.stages.to_process_sequence:
logger.info(f"[{location_name}] Stage 5 (Sequence Processing) ------------------")
if df_meta_filtered is None:
pq_name = f'image_metadata_filtered.parquet'
df_meta_filtered = pd.read_parquet(location_dir / pq_name)
logger.info(f"[{location_name}] Loaded {df_meta_filtered.shape[0]} image metadata from {pq_name}")
log_memory_usage()
# prepare the data for processing
seq_to_image_ids = df_meta_filtered.groupby('sequence')['id'].agg(list).to_dict()
lon_center = (city_boundary_info['bbox']['east'] + city_boundary_info['bbox']['west']) / 2
lat_center = (city_boundary_info['bbox']['north'] + city_boundary_info['bbox']['south']) / 2
projection = Projection(lat_center, lon_center, max_extent=50e3) # increase to 50km max extent for the projection, otherwise it will throw an error
df_meta_filtered.index = df_meta_filtered["id"]
image_infos = df_meta_filtered.to_dict(orient="index")
process_sequence_args = default_cfg
log_memory_usage()
# process the sequences
dump = {}
logger.info(f"[{location_name}] Processing downloaded sequences..")
processed_ids = list()
for seq_id, seq_image_ids in tqdm(seq_to_image_ids.items()):
try:
d, pi = process_sequence(
seq_image_ids,
image_infos,
projection,
process_sequence_args,
raw_image_dir,
out_image_dir,
)
if d is None or pi is None:
raise Exception("process_sequence returned None")
processed_ids.append(pi)
# TODO We shouldn't need dumps
dump.update(d)
except Exception as e:
logger.error(f"[{location_name}] Failed to process sequence {seq_id} skipping it. Error: {repr(e)}.")
logger.error(traceback.format_exc())
write_json(location_dir / "dump.json", dump)
# TODO: Ideally we want to move the keyframe selection filter to
# The filtering pipeline such that we do not download unnecessary
# Raw Images. But for now, we will filter the dataframe one more time after processing
processed_ids = list(itertools.chain.from_iterable(processed_ids))
df_meta_filtered_processed = df_meta_filtered[ df_meta_filtered["id"].isin(processed_ids)]
logger.info(f"[{location_name}] Final yield after processing is {df_meta_filtered_processed.shape[0]} images.")
df_meta_filtered_processed.to_parquet(location_dir / f'image_metadata_filtered_processed.parquet')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--cfg", type=str, default="mia/conf/example.yaml", help="Path to config yaml file.")
parser.add_argument("--token", type=str, default='mapillary_key', help="Either a token string or a path to a file containing the token.")
args = parser.parse_args()
cfgs = OmegaConf.load(args.cfg)
main(args, cfgs)
|