Spaces:
Building
Building
File size: 10,788 Bytes
4187c6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
# Adapted from OrienterNet
import json
from pathlib import Path
import numpy as np
import httpx
import asyncio
from aiolimiter import AsyncLimiter
import tqdm
import requests
import mercantile
import geojson
import turfpy.measurement
from vt2geojson.tools import vt_bytes_to_geojson
from opensfm.pygeometry import Camera, Pose
from opensfm.pymap import Shot
from .. import logger
from .geo import Projection
semaphore = asyncio.Semaphore(100) # number of parallel threads.
image_filename = "{image_id}.jpg"
info_filename = "{image_id}.json"
class MapillaryDownloader:
image_fields = (
"id",
"height",
"width",
"camera_parameters",
"camera_type",
"captured_at",
"compass_angle",
"geometry",
"altitude",
"computed_compass_angle",
"computed_geometry",
"computed_altitude",
"computed_rotation",
"thumb_2048_url",
"thumb_original_url",
"sequence",
"sfm_cluster",
"creator",
"make",
"model",
"is_pano",
"quality_score",
"exif_orientation"
)
image_info_url = (
"https://graph.mapillary.com/{image_id}?access_token={token}&fields={fields}"
)
seq_info_url = "https://graph.mapillary.com/image_ids?access_token={token}&sequence_id={seq_id}"
tile_info_url = "https://tiles.mapillary.com/maps/vtp/mly1_public/2/{z}/{x}/{y}?access_token={token}"
max_requests_per_minute = 50_000
def __init__(self, token: str):
self.token = token
self.client = httpx.AsyncClient(
transport=httpx.AsyncHTTPTransport(retries=20), timeout=600
)
self.limiter = AsyncLimiter(self.max_requests_per_minute // 2, time_period=60)
async def call_api(self, url: str):
async with self.limiter:
r = await self.client.get(url)
if not r.is_success:
logger.error("Error in API call: %s", r.text)
return r
async def get_tile_image_points(self, tile):
url = self.tile_info_url.format(
x=tile.x,
y=tile.y,
z=tile.z,
token=self.token
)
try :
r = await self.call_api(url)
if r.is_success:
geo_d = vt_bytes_to_geojson(
b_content=r._content,
x=tile.x,
y=tile.y,
z=tile.z,
layer="image",
)
d = geo_d["features"]
return tile, d
except Exception as e:
logger.error(f"{type(e).__name__}: {e}")
return tile, None
async def get_tiles_image_points(self, tiles, retries=3):
tile_to_images = {}
tasks = [self.get_tile_image_points(t) for t in tiles]
for i in range(retries):
failed_tiles = list()
for task in tqdm.asyncio.tqdm.as_completed(tasks):
tile, image_ids = await task
if image_ids is not None:
tile_to_images[f"z_{tile.z}_x{tile.x}_y{tile.y}"] = image_ids
else:
logger.error(f"Error when retrieving tile z_{tile.z}_x{tile.x}_y{tile.y}. Image_ids is None. Skipping.")
failed_tiles.append(tile)
if len(failed_tiles) == 0:
break
else:
if i == retries-1:
logger.error(f"Failed to retrieve {len(failed_tiles)} tiles in attempt {i}. Maxed out retries. Skipping those tiles.")
else:
logger.error(f"Failed to retrieve {len(failed_tiles)} tiles in attempt {i}. Trying again..")
tasks = [self.get_tile_image_points(t) for t in failed_tiles]
return tile_to_images
async def get_image_info(self, image_id: int):
url = self.image_info_url.format(
image_id=image_id,
token=self.token,
fields=",".join(self.image_fields),
)
r = await self.call_api(url)
if r.is_success:
return json.loads(r.text)
async def get_sequence_info(self, seq_id: str):
url = self.seq_info_url.format(seq_id=seq_id, token=self.token)
r = await self.call_api(url)
if r.is_success:
return json.loads(r.text)
async def download_image_pixels(self, url: str, path: Path):
r = await self.call_api(url)
if r.is_success:
with open(path, "wb") as fid:
fid.write(r.content)
return r.is_success
async def get_image_info_cached(self, image_id: int, path: Path):
if path.exists():
info = json.loads(path.read_text())
else:
info = await self.get_image_info(image_id)
path.write_text(json.dumps(info))
return info
async def download_image_pixels_cached(self, url: str, path: Path):
if path.exists():
return True
else:
return await self.download_image_pixels(url, path)
async def fetch_images_in_sequence(i, downloader):
async with semaphore:
info = await downloader.get_sequence_info(i)
image_ids = [int(d["id"]) for d in info["data"]]
return i, image_ids
async def fetch_images_in_sequences(sequence_ids, downloader):
seq_to_images_ids = {}
tasks = [fetch_images_in_sequence(i, downloader) for i in sequence_ids]
for task in tqdm.asyncio.tqdm.as_completed(tasks):
i, image_ids = await task
seq_to_images_ids[i] = image_ids
return seq_to_images_ids
async def fetch_image_info(i, downloader, dir_):
async with semaphore:
path = dir_ / info_filename.format(image_id=i)
# info = await downloader.get_image_info_cached(i, path)
info = await downloader.get_image_info(i) # FIXME: temporarily disable caching, takes too long to reads many (>1mil) files
return i, info
async def fetch_image_infos(image_ids, downloader, dir_):
infos = {}
num_fail = 0
tasks = [fetch_image_info(i, downloader, dir_) for i in image_ids]
for task in tqdm.asyncio.tqdm.as_completed(tasks):
i, info = await task
if info is None:
num_fail += 1
else:
infos[i] = info
return infos, num_fail
async def fetch_image_pixels(i, url, downloader, dir_, overwrite=False):
async with semaphore:
path = dir_ / image_filename.format(image_id=i)
if overwrite:
path.unlink(missing_ok=True)
success = await downloader.download_image_pixels_cached(url, path)
return i, success
async def fetch_images_pixels(image_urls, downloader, dir_):
num_fail = 0
tasks = [fetch_image_pixels(*id_url, downloader, dir_) for id_url in image_urls]
for task in tqdm.asyncio.tqdm.as_completed(tasks):
i, success = await task
num_fail += not success
return num_fail
def opensfm_camera_from_info(info: dict) -> Camera:
cam_type = info["camera_type"]
if cam_type == "perspective":
camera = Camera.create_perspective(*info["camera_parameters"])
elif cam_type == "fisheye":
camera = Camera.create_fisheye(*info["camera_parameters"])
elif Camera.is_panorama(cam_type):
camera = Camera.create_spherical()
else:
raise ValueError(cam_type)
camera.width = info["width"]
camera.height = info["height"]
camera.id = info["id"]
return camera
def opensfm_shot_from_info(info: dict, projection: Projection) -> Shot:
latlong = info["computed_geometry.coordinates"][::-1]
alt = info["computed_altitude"]
xyz = projection.project(np.array([*latlong, alt]), return_z=True)
c_rotvec_w = np.array(info["computed_rotation"])
pose = Pose()
pose.set_from_cam_to_world(-c_rotvec_w, xyz)
camera = opensfm_camera_from_info(info)
return latlong, Shot(info["id"], camera, pose)
def get_city_boundary(city, state=None, country=None, fetch_shape=False):
# Use Nominatim API to get the boundary of the city
base_url = "https://nominatim.openstreetmap.org/search"
params = {
'city': city,
'state': state,
'country': country,
'format': 'json',
'limit': 1,
'polygon_geojson': 1 if fetch_shape else 0
}
# Without a user-agent we may get blocked. This is an arbitrary user-agent and can be changed
# Rotating between user-agents may circumvent blocks but may not be fair
headers = {
'User-Agent': f'mapperceptionnet_{city}_{state}'
}
response = requests.get(base_url, params=params, headers=headers)
if response.status_code != 200:
logger.error(f"Nominatim error when fetching boundary data for {city}, {state}.\n"
f"Status code: {response.status_code}. Content: {response.content}")
return None
data = response.json()
if data is None:
logger.warn(f"No data returned by Nominatim for {city}, {state}")
return None
# Extract bbox data from the API response
bbox_data = data[0]['boundingbox']
bbox = {
'west': float(bbox_data[2]),
'south': float(bbox_data[0]),
'east': float(bbox_data[3]),
'north': float(bbox_data[1])
}
if fetch_shape:
# Extract GeoJSON boundary data from the API response
boundary_geojson = data[0]['geojson']
boundary_geojson = {
"type": "FeatureCollection",
"features": [
{"type": "Feature",
"properties": {},
"geometry": boundary_geojson}]
}
return bbox, boundary_geojson
else:
return bbox
def get_tiles_from_boundary(boundary_info, zoom=14):
if boundary_info["bound_type"] == "auto_shape":
# TODO: Instead of tiles from the big bbox, return tiles that hug the shape
geojson_shape = boundary_info["shape"]
# FIXME What to do when boundary is defined by multiple polygons!!
# Visualization tool https://geojson.tools/
coords = geojson_shape["features"][0]["geometry"]["coordinates"]
try:
polygon = geojson.Polygon(coords)
coordinates = turfpy.measurement.bbox(polygon)
except:
logger.warn(f"Boundary is defined by {len(coords)} polygons. Choosing first polygon blindly")
polygon = geojson.Polygon(coords[0])
coordinates = turfpy.measurement.bbox(polygon)
coordinates = dict(zip(["west", "south", "east", "north"], coordinates))
else:
coordinates = boundary_info["bbox"]
tiles = list(
mercantile.tiles(
**coordinates,
zooms=zoom,
)
)
return tiles |