File size: 4,998 Bytes
4187c6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright (c) Meta Platforms, Inc. and affiliates.

# Adapted from Hierarchical-Localization, Paul-Edouard Sarlin, ETH Zurich
# https://github.com/cvg/Hierarchical-Localization/blob/master/hloc/utils/viz.py
# Released under the Apache License 2.0

import numpy as np
import torch 
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches

def features_to_RGB(*Fs, masks=None, skip=1):
    """Project a list of d-dimensional feature maps to RGB colors using PCA."""
    from sklearn.decomposition import PCA

    def normalize(x):
        return x / np.linalg.norm(x, axis=-1, keepdims=True)

    if masks is not None:
        assert len(Fs) == len(masks)

    flatten = []
    for i, F in enumerate(Fs):
        c, h, w = F.shape
        F = np.rollaxis(F, 0, 3)
        F_flat = F.reshape(-1, c)
        if masks is not None and masks[i] is not None:
            mask = masks[i]
            assert mask.shape == F.shape[:2]
            F_flat = F_flat[mask.reshape(-1)]
        flatten.append(F_flat)
    flatten = np.concatenate(flatten, axis=0)
    flatten = normalize(flatten)

    pca = PCA(n_components=3)
    if skip > 1:
        pca.fit(flatten[::skip])
        flatten = pca.transform(flatten)
    else:
        flatten = pca.fit_transform(flatten)
    flatten = (normalize(flatten) + 1) / 2

    Fs_rgb = []
    for i, F in enumerate(Fs):
        h, w = F.shape[-2:]
        if masks is None or masks[i] is None:
            F_rgb, flatten = np.split(flatten, [h * w], axis=0)
            F_rgb = F_rgb.reshape((h, w, 3))
        else:
            F_rgb = np.zeros((h, w, 3))
            indices = np.where(masks[i])
            F_rgb[indices], flatten = np.split(flatten, [len(indices[0])], axis=0)
            F_rgb = np.concatenate([F_rgb, masks[i][..., None]], axis=-1)
        Fs_rgb.append(F_rgb)
    assert flatten.shape[0] == 0, flatten.shape
    return Fs_rgb


def one_hot_argmax_to_rgb(y, num_class):
    '''
    Args:
        probs: (B, C, H, W)
        num_class: int
        0: road 0
1: crossing 1
2: explicit_pedestrian 2
4: building 
6: terrain
7: parking `

    '''

    class_colors = {
        'road': (68, 68, 68),           # 0: Black
        'crossing': (244, 162, 97),     # 1; Red
        'explicit_pedestrian': (233, 196, 106),  # 2: Yellow
        # 'explicit_void': (128, 128, 128),      # 3: White
        'building': (231, 111, 81),   # 5: Magenta
        'terrain': (42, 157, 143),    # 7: Cyan
        'parking': (204, 204, 204),  # 8: Dark Grey
        'predicted_void': (255, 255, 255)
    }
    class_colors = class_colors.values()
    class_colors = [torch.tensor(x).float() for x in class_colors]

    threshold = 0.25
    argmaxed = torch.argmax((y > threshold).float(), dim=1) # Take argmax
    argmaxed[torch.all(y <= threshold, dim=1)] = num_class
    # print(argmaxed.shape)

    seg_rgb = torch.ones(
        (
            argmaxed.shape[0],
            3,
            argmaxed.shape[1],
            argmaxed.shape[2],
        )
    ) * 255
    for i in range(num_class + 1):
        seg_rgb[:, 0, :, :][argmaxed == i] = class_colors[i][0]
        seg_rgb[:, 1, :, :][argmaxed == i] = class_colors[i][1]
        seg_rgb[:, 2, :, :][argmaxed == i] = class_colors[i][2]

    return seg_rgb

def plot_images(imgs, titles=None, cmaps="gray", dpi=100, pad=0.5, adaptive=True):
    """Plot a set of images horizontally.
    Args:
        imgs: a list of NumPy or PyTorch images, RGB (H, W, 3) or mono (H, W).
        titles: a list of strings, as titles for each image.
        cmaps: colormaps for monochrome images.
        adaptive: whether the figure size should fit the image aspect ratios.
    """
    n = len(imgs)
    if not isinstance(cmaps, (list, tuple)):
        cmaps = [cmaps] * n

    if adaptive:
        ratios = [i.shape[1] / i.shape[0] for i in imgs]  # W / H
    else:
        ratios = [4 / 3] * n
    figsize = [sum(ratios) * 4.5, 4.5]
    fig, ax = plt.subplots(
        1, n, figsize=figsize, dpi=dpi, gridspec_kw={"width_ratios": ratios}
    )
    if n == 1:
        ax = [ax]
    for i in range(n):
        ax[i].imshow(imgs[i], cmap=plt.get_cmap(cmaps[i]))
        ax[i].get_yaxis().set_ticks([])
        ax[i].get_xaxis().set_ticks([])
        ax[i].set_axis_off()
        for spine in ax[i].spines.values():  # remove frame
            spine.set_visible(False)
        if titles:
            ax[i].set_title(titles[i])
    
    # Create legend
    class_colors = {
        'Road': (68, 68, 68),           # 0: Black
        'Crossing': (244, 162, 97),     # 1; Red
        'Sidewalk': (233, 196, 106),  # 2: Yellow
        'Building': (231, 111, 81),   # 5: Magenta
        'Terrain': (42, 157, 143),    # 7: Cyan
        'Parking': (204, 204, 204),  # 8: Dark Grey
    }
    patches = [mpatches.Patch(color=[c/255.0 for c in color], label=label) for label, color in class_colors.items()]
    plt.legend(handles=patches, loc='upper center', bbox_to_anchor=(0.5, -0.05), ncol=3)

    fig.tight_layout(pad=pad)