File size: 8,996 Bytes
4187c6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
"""

Example usage:
    python3.9 -m mapper.data.debug.calc_stats -d /ocean/projects/cis220039p/shared/map_perception/dataset_v0
"""
import datetime
from datetime import datetime, timezone, timedelta
import time
import argparse
import os
from pathlib import Path
import json

from astral import LocationInfo
from astral.sun import sun
from timezonefinder import TimezoneFinder

import numpy as np
import pandas as pd
import geopandas as gpd
from pyproj.transformer import Transformer
from matplotlib import pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
import tqdm

from ..fpv import filters
from .. import logger


def is_daytime(timestamp, latitude, longitude):
    # Create a LocationInfo object for the given latitude and longitude
    tz_str = TimezoneFinder().timezone_at(lng=longitude, lat=latitude) 
    location = LocationInfo(name="", region="", timezone=tz_str,
                            latitude=latitude, longitude=longitude)
    
    # Convert the timestamp to a datetime object
    dt = datetime.fromtimestamp(timestamp, tz=timezone.utc)
    # We query one day before and one day after to avoid timezone ambiguities
    # Our query timestamp is guaranteed to fall into one of those 3 dates.
    # Astral sometimes returns sunrise or sunsets that are not from the same query date
    # Refer to this https://github.com/sffjunkie/astral/issues/83
    d0 = (dt - timedelta(days=1)).date()
    d1 = dt.date()
    d2 = (dt + timedelta(days=1)).date()

    # Calculate sunrise and sunset times
    times = list()
    for d in [d0, d1, d2]:
        s = sun(location.observer, date=d)
        sunrise = s['sunrise']
        sunset = s['sunset']
        times.append((sunrise, "sunrise"))
        times.append((sunset, 'sunset'))
    
    # Need to sort because there is no particular order 
    # where sunrise is always before sunset or vice versa
    times = sorted(times, key=lambda x: x[0])
    assert times[-1][0] > dt > times[0][0]

    for i in range(1, len(times)):
        if dt < times[i][0]:
            prev_event = times[i-1][1]
            break
    
    return prev_event == "sunrise"

def calculate_occupancy_map(df: pd.DataFrame, bev_meter_coverage=112, meters_per_pixel=112):
    """
    Args:
        bev_meter_coverage: How much did the BEVs in the dataframe cover in meters
        meters_per_pixel: At what resolution should we initialize the occupancy map. 
        This need not be the same resolution as the BEV. That would be unnecessarilly slow but most accurate.
    """
    # convert pandas dataframe to geopandas dataframe
    gdf = gpd.GeoDataFrame(df, 
                           geometry=gpd.points_from_xy(
                               df['computed_geometry.long'], 
                               df['computed_geometry.lat']), 
                            crs=4326)

    utm_crs = gdf.estimate_utm_crs()
    gdf_utm = gdf.to_crs(utm_crs)
    left = gdf_utm.geometry.x.min() - bev_meter_coverage
    right = gdf_utm.geometry.x.max() + bev_meter_coverage
    bottom = gdf_utm.geometry.y.min() - bev_meter_coverage
    top = gdf_utm.geometry.y.max() + bev_meter_coverage

    width = right - left
    height = top - bottom
    width_pixels = int(width // meters_per_pixel)
    height_pixels = int(height // meters_per_pixel)
    if bev_meter_coverage % meters_per_pixel != 0:
        logger.warn(f"bev_meter_coverage {bev_meter_coverage} is not divisble by meters_per_pixel "
                    f"{meters_per_pixel}. Occupancy may be overestimated.")

    bev_pixels = int(np.ceil(bev_meter_coverage / meters_per_pixel))

    logger.info(f"Initializing {height_pixels}x{width_pixels} occupancy map. Using {bev_pixels}x{bev_pixels} pixels for each BEV.")
    map = np.zeros((height_pixels, width_pixels), dtype=bool)
    
    for row in gdf_utm.itertuples():
        utm_x = row.geometry.x
        utm_y = row.geometry.y
        img_x = int((utm_x - left) // meters_per_pixel)
        img_y = int((utm_y - bottom) // meters_per_pixel)

        bev_pixels_left = bev_pixels // 2
        bev_pixels_right = bev_pixels - bev_pixels_left
        map[img_y - bev_pixels_left: img_y + bev_pixels_right,
            img_x - bev_pixels_left: img_x + bev_pixels_right] = True
    
    return map

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--dataset_dir", '-d', type=str, required=True, help="Dataset directory")
    parser.add_argument("--locations", '-l', type=str, default="all",
                        help="Location names in CSV format. Set to 'all' to traverse all locations.")
    parser.add_argument("--plot", action="store_true", help="Store plots per location in PDFs")
    parser.add_argument("--output", "-o", default=None, type=str, help="output json file to store statistics")
    args = parser.parse_args()

    locations = list()
    if args.locations.lower() == "all":
        locations = os.listdir(args.dataset_dir)
        locations = [l for l in locations if os.path.isdir(os.path.join(args.dataset_dir, l))]
    else:
        locations = args.locations.split(",")

    logger.info(f"Parsing {len(locations)} locations..")

    all_locs_stats = dict()

    for location in tqdm.tqdm(locations):
        dataset_dir = Path(args.dataset_dir)
        location_dir = dataset_dir / location
        bev_dir = location_dir / "bev_raw"
        semantic_mask_dir = location_dir / "semantic_masks"
        osm_cache_dir = location_dir / "osm_cache"

        pq_name = 'image_metadata_filtered_processed.parquet'
        df = pd.read_parquet(location_dir / pq_name)

        df = df[df["computed_geometry.lat"].notna()]
        df = df[df["computed_geometry.long"].notna()]

        logger.info(f"Loaded {df.shape[0]} image metadata from {location}")

        # Calc derrivative attributes
        tqdm.tqdm.pandas()

        df["loc_descrip"] = filters.haversine_np(
            lon1=df["geometry.long"], lat1=df["geometry.lat"],
            lon2=df["computed_geometry.long"], lat2=df["computed_geometry.lat"]
        )

        df["angle_descrip"] = filters.angle_dist(
            df["compass_angle"],
            df["computed_compass_angle"]
        )

        # FIXME: Super slow
        # df["is_daytime"] = df.progress_apply(lambda x: is_daytime(x["captured_at"]*1e-3, 
        #                                                  x["computed_geometry.lat"], 
        #                                                  x["computed_geometry.long"]), 
        #                             axis="columns", raw=False, engine="python")

        meters_per_pixel = 7
        map = calculate_occupancy_map(df, bev_meter_coverage=112, 
                                      meters_per_pixel=meters_per_pixel)

        # Calc aggregate stats
        loc_stats = dict()
        loc_stats["num_images"] = len(df)
        loc_stats["area_covered_km2"] = np.sum(map) * meters_per_pixel ** 2 * 1e-6
        loc_stats["camera_types"] = set(df["camera_type"].unique())
        loc_stats["camera_makes"] = set(df["make"].unique())
        loc_stats["camera_model"] = set(df["model"].unique())

        all_locs_stats[location] = loc_stats

        # Plot if requested
        if args.plot:
            with PdfPages(location_dir / "stats.pdf") as pdf:
                plt.figure()
                plt.imshow(map)
                plt.title(f"{location} occupancy map")
                pdf.savefig()
                plt.close()
                for k in ["make", "model", "camera_type", "loc_descrip",
                          "angle_descrip"]:
                    plt.figure()
                    df[k].hist()
                    plt.title(k)
                    plt.xlabel(k)
                    plt.xticks(rotation=90)
                    plt.ylabel("Count")
                    plt.tight_layout()
                    pdf.savefig()
                    plt.close()

    # Aggregate all stats
    aggregated_stats = dict()
    for loc, loc_stats in all_locs_stats.items():
        for k,v in loc_stats.items():
            if isinstance(v, float) or isinstance(v, int):
                if k not in aggregated_stats.keys():
                    aggregated_stats[k] = v
                else:
                    aggregated_stats[k] += v
            elif isinstance(v, set):
                if k not in aggregated_stats.keys():
                    aggregated_stats[k] = v
                else:
                    aggregated_stats[k] = aggregated_stats[k].union(v)
                aggregated_stats[f"{k}_count"] = len(aggregated_stats[k])
            else:
                raise Exception(f"{v} is not supported !")

    all_locs_stats["aggregated"] = aggregated_stats

    print(all_locs_stats)

    # Store for json
    for loc, loc_stats in all_locs_stats.items():
        for k,v in loc_stats.items():
            if isinstance(v, set):
                loc_stats[k] = list(v)
    
    if args.output:
        with open(args.output, "w") as f:
            json.dump(all_locs_stats, f, indent=2)