Spaces:
Building
Building
File size: 6,987 Bytes
4187c6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import os
import numpy as np
from shapely import geometry, affinity
from pyquaternion import Quaternion
import cv2
from nuscenes.eval.detection.utils import category_to_detection_name
from nuscenes.eval.detection.constants import DETECTION_NAMES
from nuscenes.utils.data_classes import LidarPointCloud
from nuscenes.map_expansion.map_api import NuScenesMap
from shapely.strtree import STRtree
from collections import OrderedDict
import torch
def decode_binary_labels(labels, nclass):
bits = torch.pow(2, torch.arange(nclass))
return (labels & bits.view(-1, 1, 1)) > 0
def transform_polygon(polygon, affine):
"""
Transform a 2D polygon
"""
a, b, tx, c, d, ty = affine.flatten()[:6]
return affinity.affine_transform(polygon, [a, b, c, d, tx, ty])
def render_polygon(mask, polygon, extents, resolution, value=1):
if len(polygon) == 0:
return
polygon = (polygon - np.array(extents[:2])) / resolution
polygon = np.ascontiguousarray(polygon).round().astype(np.int32)
cv2.fillConvexPoly(mask, polygon, value)
def transform(matrix, vectors):
vectors = np.dot(matrix[:-1, :-1], vectors.T)
vectors = vectors.T + matrix[:-1, -1]
return vectors
CAMERA_NAMES = ['CAM_FRONT', 'CAM_FRONT_LEFT', 'CAM_FRONT_RIGHT',
'CAM_BACK_LEFT', 'CAM_BACK_RIGHT', 'CAM_BACK']
NUSCENES_CLASS_NAMES = [
'drivable_area', 'ped_crossing', 'walkway', 'carpark', 'car', 'truck',
'bus', 'trailer', 'construction_vehicle', 'pedestrian', 'motorcycle',
'bicycle', 'traffic_cone', 'barrier'
]
STATIC_CLASSES = ['drivable_area', 'ped_crossing', 'walkway', 'carpark_area']
LOCATIONS = ['boston-seaport', 'singapore-onenorth', 'singapore-queenstown',
'singapore-hollandvillage']
def load_map_data(dataroot, location):
# Load the NuScenes map object
nusc_map = NuScenesMap(dataroot, location)
map_data = OrderedDict()
for layer in STATIC_CLASSES:
# Retrieve all data associated with the current layer
records = getattr(nusc_map, layer)
polygons = list()
# Drivable area records can contain multiple polygons
if layer == 'drivable_area':
for record in records:
# Convert each entry in the record into a shapely object
for token in record['polygon_tokens']:
poly = nusc_map.extract_polygon(token)
if poly.is_valid:
polygons.append(poly)
else:
for record in records:
# Convert each entry in the record into a shapely object
poly = nusc_map.extract_polygon(record['polygon_token'])
if poly.is_valid:
polygons.append(poly)
# Store as an R-Tree for fast intersection queries
map_data[layer] = STRtree(polygons)
return map_data
def iterate_samples(nuscenes, start_token):
sample_token = start_token
while sample_token != '':
sample = nuscenes.get('sample', sample_token)
yield sample
sample_token = sample['next']
def get_map_masks(nuscenes, map_data, sample_data, extents, resolution):
# Render each layer sequentially
layers = [get_layer_mask(nuscenes, polys, sample_data, extents,
resolution) for layer, polys in map_data.items()]
return np.stack(layers, axis=0)
def get_layer_mask(nuscenes, polygons, sample_data, extents, resolution):
# Get the 2D affine transform from bev coords to map coords
tfm = get_sensor_transform(nuscenes, sample_data)[[0, 1, 3]][:, [0, 2, 3]]
inv_tfm = np.linalg.inv(tfm)
# Create a patch representing the birds-eye-view region in map coordinates
map_patch = geometry.box(*extents)
map_patch = transform_polygon(map_patch, tfm)
# Initialise the map mask
x1, z1, x2, z2 = extents
mask = np.zeros((int((z2 - z1) / resolution), int((x2 - x1) / resolution)),
dtype=np.uint8)
# Find all polygons which intersect with the area of interest
for polygon in polygons.query(map_patch):
polygon = polygon.intersection(map_patch)
# Transform into map coordinates
polygon = transform_polygon(polygon, inv_tfm)
# Render the polygon to the mask
render_shapely_polygon(mask, polygon, extents, resolution)
return mask
def get_object_masks(nuscenes, sample_data, extents, resolution):
# Initialize object masks
nclass = len(DETECTION_NAMES) + 1
grid_width = int((extents[2] - extents[0]) / resolution)
grid_height = int((extents[3] - extents[1]) / resolution)
masks = np.zeros((nclass, grid_height, grid_width), dtype=np.uint8)
# Get the 2D affine transform from bev coords to map coords
tfm = get_sensor_transform(nuscenes, sample_data)[[0, 1, 3]][:, [0, 2, 3]]
inv_tfm = np.linalg.inv(tfm)
for box in nuscenes.get_boxes(sample_data['token']):
# Get the index of the class
det_name = category_to_detection_name(box.name)
if det_name not in DETECTION_NAMES:
class_id = -1
else:
class_id = DETECTION_NAMES.index(det_name)
# Get bounding box coordinates in the grid coordinate frame
bbox = box.bottom_corners()[:2]
local_bbox = np.dot(inv_tfm[:2, :2], bbox).T + inv_tfm[:2, 2]
# Render the rotated bounding box to the mask
render_polygon(masks[class_id], local_bbox, extents, resolution)
return masks.astype(np.bool)
def get_sensor_transform(nuscenes, sample_data):
# Load sensor transform data
sensor = nuscenes.get(
'calibrated_sensor', sample_data['calibrated_sensor_token'])
sensor_tfm = make_transform_matrix(sensor)
# Load ego pose data
pose = nuscenes.get('ego_pose', sample_data['ego_pose_token'])
pose_tfm = make_transform_matrix(pose)
return np.dot(pose_tfm, sensor_tfm)
def load_point_cloud(nuscenes, sample_data):
# Load point cloud
lidar_path = os.path.join(nuscenes.dataroot, sample_data['filename'])
pcl = LidarPointCloud.from_file(lidar_path)
return pcl.points[:3, :].T
def make_transform_matrix(record):
"""
Create a 4x4 transform matrix from a calibrated_sensor or ego_pose record
"""
transform = np.eye(4)
transform[:3, :3] = Quaternion(record['rotation']).rotation_matrix
transform[:3, 3] = np.array(record['translation'])
return transform
def render_shapely_polygon(mask, polygon, extents, resolution):
if polygon.geom_type == 'Polygon':
# Render exteriors
render_polygon(mask, polygon.exterior.coords, extents, resolution, 1)
# Render interiors
for hole in polygon.interiors:
render_polygon(mask, hole.coords, extents, resolution, 0)
# Handle the case of compound shapes
else:
for poly in polygon:
render_shapely_polygon(mask, poly, extents, resolution) |