File size: 7,863 Bytes
4187c6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
import torch
import numpy as np
from pyquaternion import Quaternion
from nuscenes.nuscenes import NuScenes
from itertools import chain
from PIL import Image
from torchvision import transforms as T
import torchvision.transforms as tvf
from torchvision.transforms.functional import to_tensor

from .splits_roddick import create_splits_scenes_roddick
from ..image import pad_image, rectify_image, resize_image
from .utils import decode_binary_labels
from ..utils import decompose_rotmat
from ...utils.io import read_image
from ...utils.wrappers import Camera
from ..schema import NuScenesDataConfiguration


class NuScenesDataset(torch.utils.data.Dataset):
    def __init__(self, cfg: NuScenesDataConfiguration, split="train"):

        self.cfg = cfg
        self.nusc = NuScenes(version=cfg.version, dataroot=str(cfg.data_dir))
        self.map_data_root = cfg.map_dir
        self.split = split

        self.scenes = create_splits_scenes_roddick() # custom based on Roddick et al. 

        scene_split = {
            'v1.0-trainval': {'train': 'train', 'val': 'val', 'test': 'val'},
            'v1.0-mini': {'train': 'mini_train', 'val': 'mini_val'},
        }[cfg.version][split]
        self.scenes = self.scenes[scene_split]
        self.sample = list(filter(lambda sample: self.nusc.get(
            'scene', sample['scene_token'])['name'] in self.scenes, self.nusc.sample))

        self.tfs = self.get_augmentations() if split == "train" else T.Compose([])

        data_tokens = []
        for sample in self.sample:
            data_token = sample['data']
            data_token = [v for k,v in data_token.items() if k == "CAM_FRONT"]

            data_tokens.append(data_token)

        data_tokens = list(chain.from_iterable(data_tokens))
        data = [self.nusc.get('sample_data', token) for token in data_tokens]

        self.data = []
        for d in data:
            sample = self.nusc.get('sample', d['sample_token'])
            scene = self.nusc.get('scene', sample['scene_token'])
            location = self.nusc.get('log', scene['log_token'])['location']

            file_name = d['filename']
            ego_pose = self.nusc.get('ego_pose', d['ego_pose_token'])
            calibrated_sensor = self.nusc.get(
                "calibrated_sensor", d['calibrated_sensor_token'])

            ego2global = np.eye(4).astype(np.float32)
            ego2global[:3, :3] = Quaternion(ego_pose['rotation']).rotation_matrix
            ego2global[:3, 3] = ego_pose['translation']

            sensor2ego = np.eye(4).astype(np.float32)
            sensor2ego[:3, :3] = Quaternion(
                calibrated_sensor['rotation']).rotation_matrix
            sensor2ego[:3, 3] = calibrated_sensor['translation']

            sensor2global = ego2global @ sensor2ego

            rotation = sensor2global[:3, :3]
            roll, pitch, yaw = decompose_rotmat(rotation)

            fx = calibrated_sensor['camera_intrinsic'][0][0]
            fy = calibrated_sensor['camera_intrinsic'][1][1]
            cx = calibrated_sensor['camera_intrinsic'][0][2]
            cy = calibrated_sensor['camera_intrinsic'][1][2]
            width = d['width']
            height = d['height']

            cam = Camera(torch.tensor(
                [width, height, fx, fy, cx - 0.5, cy - 0.5])).float()
            self.data.append({
                'filename': file_name,
                'yaw': yaw,
                'pitch': pitch,
                'roll': roll,
                'cam': cam,
                'sensor2global': sensor2global,
                'token': d['token'],
                'sample_token': d['sample_token'],
                'location': location
            })
        
        if self.cfg.percentage < 1.0 and split == "train":
            self.data = self.data[:int(len(self.data) * self.cfg.percentage)]

    def get_augmentations(self):

        print(f"Augmentation!", "\n" * 10)
        augmentations = [
            tvf.ColorJitter(
                brightness=self.cfg.augmentations.brightness,
                contrast=self.cfg.augmentations.contrast,
                saturation=self.cfg.augmentations.saturation,
                hue=self.cfg.augmentations.hue,
            )
        ]

        if self.cfg.augmentations.random_resized_crop:
            augmentations.append(
                tvf.RandomResizedCrop(scale=(0.8, 1.0))
            )  # RandomResizedCrop

        if self.cfg.augmentations.gaussian_noise.enabled:
            augmentations.append(
                tvf.GaussianNoise(
                    mean=self.cfg.augmentations.gaussian_noise.mean,
                    std=self.cfg.augmentations.gaussian_noise.std,
                )
            )  # Gaussian noise

        if self.cfg.augmentations.brightness_contrast.enabled:
            augmentations.append(
                tvf.ColorJitter(
                    brightness=self.cfg.augmentations.brightness_contrast.brightness_factor,
                    contrast=self.cfg.augmentations.brightness_contrast.contrast_factor,
                    saturation=0,  # Keep saturation at 0 for brightness and contrast adjustment
                    hue=0,
                )
            )  # Brightness and contrast adjustment

        return tvf.Compose(augmentations)

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        d = self.data[idx]

        image = read_image(os.path.join(self.nusc.dataroot, d['filename']))
        image = np.array(image)
        cam = d['cam']
        roll = d['roll']
        pitch = d['pitch']
        yaw = d['yaw']

        with Image.open(self.map_data_root / f"{d['token']}.png") as semantic_image:
            semantic_mask = to_tensor(semantic_image)

        semantic_mask = decode_binary_labels(semantic_mask, self.cfg.num_classes + 1)
        semantic_mask = torch.nn.functional.max_pool2d(semantic_mask.float(), (2, 2), stride=2) # 2 times downsample
        semantic_mask = semantic_mask.permute(1, 2, 0)
        semantic_mask = torch.flip(semantic_mask, [0])
        
        visibility_mask = semantic_mask[..., -1]
        semantic_mask = semantic_mask[..., :-1]

        if self.cfg.class_mapping is not None:
            semantic_mask = semantic_mask[..., self.cfg.class_mapping]

        image = (
            torch.from_numpy(np.ascontiguousarray(image))
            .permute(2, 0, 1)
            .float()
            .div_(255)
        )

        if not self.cfg.gravity_align:
            # Turn off gravity alignment
            roll = 0.0
            pitch = 0.0
            image, valid = rectify_image(image, cam, roll, pitch)

        else:
            image, valid = rectify_image(
                image, cam, roll, pitch if self.cfg.rectify_pitch else None
            )
            roll = 0.0
            if self.cfg.rectify_pitch:
                pitch = 0.0
        if self.cfg.resize_image is not None:
            image, _, cam, valid = resize_image(
                image, self.cfg.resize_image, fn=max, camera=cam, valid=valid
            )
            if self.cfg.pad_to_square:
                image, valid, cam = pad_image(image, self.cfg.resize_image, cam, valid)
        image = self.tfs(image)

        confidence_map = visibility_mask.clone().float()
        confidence_map = (confidence_map - confidence_map.min()) / (confidence_map.max() - confidence_map.min())

        return {
            "image": image,
            "roll_pitch_yaw": torch.tensor([roll, pitch, yaw]).float(),
            "camera": cam,
            "valid": valid,
            "seg_masks": semantic_mask.float(),
            "token": d['token'],
            "sample_token": d['sample_token'],
            'location': d['location'],
            'flood_masks': visibility_mask.float(),
            "confidence_map": confidence_map,
            'name': d['sample_token']
        }