Spaces:
Building
Building
File size: 12,353 Bytes
4187c6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import os
import numpy as np
import torch.utils.data as data
import umsgpack
from PIL import Image
import json
import torchvision.transforms as tvf
from .transform import BEVTransform
from ..schema import KITTIDataConfiguration
class BEVKitti360Dataset(data.Dataset):
_IMG_DIR = "img"
_BEV_MSK_DIR = "bev_msk"
_BEV_PLABEL_DIR = "bev_plabel_dynamic"
_FV_MSK_DIR = "front_msk_seam"
_BEV_DIR = "bev_ortho"
_LST_DIR = "split"
_PERCENTAGES_DIR = "percentages"
_BEV_METADATA_FILE = "metadata_ortho.bin"
_FV_METADATA_FILE = "metadata_front.bin"
def __init__(self, cfg: KITTIDataConfiguration, split_name="train"):
super(BEVKitti360Dataset, self).__init__()
self.cfg = cfg
self.seam_root_dir = cfg.seam_root_dir # Directory of seamless data
self.kitti_root_dir = cfg.dataset_root_dir # Directory of the KITTI360 data
self.split_name = split_name
self.rgb_cameras = ['front']
if cfg.bev_percentage < 1:
self.bev_percentage = cfg.bev_percentage
else:
self.bev_percentage = int(cfg.bev_percentage)
# Folders
self._img_dir = os.path.join(self.seam_root_dir, BEVKitti360Dataset._IMG_DIR)
self._bev_msk_dir = os.path.join(self.seam_root_dir, BEVKitti360Dataset._BEV_MSK_DIR, BEVKitti360Dataset._BEV_DIR)
self._bev_plabel_dir = os.path.join(self.seam_root_dir, BEVKitti360Dataset._BEV_PLABEL_DIR, BEVKitti360Dataset._BEV_DIR)
self._fv_msk_dir = os.path.join(self.seam_root_dir, BEVKitti360Dataset._FV_MSK_DIR, "front")
self._lst_dir = os.path.join(self.seam_root_dir, BEVKitti360Dataset._LST_DIR)
self._percentages_dir = os.path.join(self.seam_root_dir, BEVKitti360Dataset._LST_DIR, BEVKitti360Dataset._PERCENTAGES_DIR)
# Load meta-data and split
self._bev_meta, self._bev_images, self._bev_images_all, self._fv_meta, self._fv_images, self._fv_images_all,\
self._img_map, self.bev_percent_split = self._load_split()
self.tfs = self.get_augmentations() if split_name == "train" else tvf.Compose([])
self.transform = BEVTransform(cfg, self.tfs)
def get_augmentations(self):
print(f"Augmentation!", "\n" * 10)
augmentations = [
tvf.ColorJitter(
brightness=self.cfg.augmentations.brightness,
contrast=self.cfg.augmentations.contrast,
saturation=self.cfg.augmentations.saturation,
hue=self.cfg.augmentations.hue,
)
]
if self.cfg.augmentations.random_resized_crop:
augmentations.append(
tvf.RandomResizedCrop(scale=(0.8, 1.0))
) # RandomResizedCrop
if self.cfg.augmentations.gaussian_noise.enabled:
augmentations.append(
tvf.GaussianNoise(
mean=self.cfg.augmentations.gaussian_noise.mean,
std=self.cfg.augmentations.gaussian_noise.std,
)
) # Gaussian noise
if self.cfg.augmentations.brightness_contrast.enabled:
augmentations.append(
tvf.ColorJitter(
brightness=self.cfg.augmentations.brightness_contrast.brightness_factor,
contrast=self.cfg.augmentations.brightness_contrast.contrast_factor,
saturation=0, # Keep saturation at 0 for brightness and contrast adjustment
hue=0,
)
) # Brightness and contrast adjustment
return tvf.Compose(augmentations)
# Load the train or the validation split
def _load_split(self):
with open(os.path.join(self.seam_root_dir, BEVKitti360Dataset._BEV_METADATA_FILE), "rb") as fid:
bev_metadata = umsgpack.unpack(fid, encoding="utf-8")
with open(os.path.join(self.seam_root_dir, BEVKitti360Dataset._FV_METADATA_FILE), 'rb') as fid:
fv_metadata = umsgpack.unpack(fid, encoding="utf-8")
# Read the files for this split
with open(os.path.join(self._lst_dir, self.split_name + ".txt"), "r") as fid:
lst = fid.readlines()
lst = [line.strip() for line in lst]
if self.split_name == "train":
# Get all the frames in the train dataset. This will be used for generating samples for temporal consistency.
with open(os.path.join(self._lst_dir, "{}_all.txt".format(self.split_name)), 'r') as fid:
lst_all = fid.readlines()
lst_all = [line.strip() for line in lst_all]
# Get all the samples for which the BEV plabels have to be loaded.
percentage_file = os.path.join(self._percentages_dir, "{}_{}.txt".format(self.split_name, self.bev_percentage))
print("Loading {}% file".format(self.bev_percentage))
with open(percentage_file, 'r') as fid:
lst_percent = fid.readlines()
lst_percent = [line.strip() for line in lst_percent]
else:
lst_all = lst
lst_percent = lst
# Remove elements from lst if they are not in _FRONT_MSK_DIR
fv_msk_frames = os.listdir(self._fv_msk_dir)
fv_msk_frames = [frame.split(".")[0] for frame in fv_msk_frames]
fv_msk_frames_exist_map = {entry: True for entry in fv_msk_frames} # This is to speed-up the dataloader
lst = [entry for entry in lst if entry in fv_msk_frames_exist_map]
lst_all = [entry for entry in lst_all if entry in fv_msk_frames_exist_map]
# Filter based on the samples plabels
if self.bev_percentage < 100:
lst_filt = [entry for entry in lst if entry in lst_percent]
lst = lst_filt
# Remove any potential duplicates
lst = set(lst)
lst_percent = set(lst_percent)
img_map = {}
for camera in self.rgb_cameras:
with open(os.path.join(self._img_dir, "{}.json".format(camera))) as fp:
map_list = json.load(fp)
map_dict = {k: v for d in map_list for k, v in d.items()}
img_map[camera] = map_dict
bev_meta = bev_metadata["meta"]
bev_images = [img_desc for img_desc in bev_metadata["images"] if img_desc["id"] in lst]
fv_meta = fv_metadata["meta"]
fv_images = [img_desc for img_desc in fv_metadata['images'] if img_desc['id'] in lst]
# Check for inconsistency due to inconsistencies in the input files or dataset
bev_images_ids = [bev_img["id"] for bev_img in bev_images]
fv_images_ids = [fv_img["id"] for fv_img in fv_images]
assert set(bev_images_ids) == set(fv_images_ids) and len(bev_images_ids) == len(fv_images_ids), 'Inconsistency between fv_images and bev_images detected'
if lst_all is not None:
bev_images_all = [img_desc for img_desc in bev_metadata['images'] if img_desc['id'] in lst_all]
fv_images_all = [img_desc for img_desc in fv_metadata['images'] if img_desc['id'] in lst_all]
else:
bev_images_all, fv_images_all = None, None
return bev_meta, bev_images, bev_images_all, fv_meta, fv_images, fv_images_all, img_map, lst_percent
def _find_index(self, list, key, value):
for i, dic in enumerate(list):
if dic[key] == value:
return i
return None
def _load_item(self, item_idx):
# Find the index of the element in the list containing all elements
all_idx = self._find_index(self._fv_images_all, "id", self._fv_images[item_idx]['id'])
if all_idx is None:
raise IOError("Required index not found!")
bev_img_desc = self._bev_images[item_idx]
fv_img_desc = self._fv_images[item_idx]
scene, frame_id = self._bev_images[item_idx]["id"].split(";")
# Get the RGB file names
img_file = os.path.join(
self.kitti_root_dir,
self._img_map["front"]["{}.png"
.format(bev_img_desc['id'])]
)
if not os.path.exists(img_file):
raise IOError(
"RGB image not found! Scene: {}, Frame: {}".format(scene, frame_id)
)
# Load the images
img = Image.open(img_file).convert(mode="RGB")
# Load the BEV mask
bev_msk_file = os.path.join(
self._bev_msk_dir,
"{}.png".format(bev_img_desc['id'])
)
bev_msk = Image.open(bev_msk_file)
bev_plabel = None
# Load the front mask
fv_msk_file = os.path.join(
self._fv_msk_dir,
"{}.png".format(fv_img_desc['id'])
)
fv_msk = Image.open(fv_msk_file)
bev_weights_msk_combined = None
# Get the other information
bev_cat = bev_img_desc["cat"]
bev_iscrowd = bev_img_desc["iscrowd"]
fv_cat = fv_img_desc['cat']
fv_iscrowd = fv_img_desc['iscrowd']
fv_intrinsics = fv_img_desc["cam_intrinsic"]
ego_pose = fv_img_desc['ego_pose'] # This loads the cam0 pose
# Get the ids of all the frames
frame_ids = bev_img_desc["id"]
return img, bev_msk, bev_plabel, fv_msk, bev_weights_msk_combined, bev_cat, \
bev_iscrowd, fv_cat, fv_iscrowd, fv_intrinsics, ego_pose, frame_ids
@property
def fv_categories(self):
"""Category names"""
return self._fv_meta["categories"]
@property
def fv_num_categories(self):
"""Number of categories"""
return len(self.fv_categories)
@property
def fv_num_stuff(self):
"""Number of "stuff" categories"""
return self._fv_meta["num_stuff"]
@property
def fv_num_thing(self):
"""Number of "thing" categories"""
return self.fv_num_categories - self.fv_num_stuff
@property
def bev_categories(self):
"""Category names"""
return self._bev_meta["categories"]
@property
def bev_num_categories(self):
"""Number of categories"""
return len(self.bev_categories)
@property
def bev_num_stuff(self):
"""Number of "stuff" categories"""
return self._bev_meta["num_stuff"]
@property
def bev_num_thing(self):
"""Number of "thing" categories"""
return self.bev_num_categories - self.bev_num_stuff
@property
def original_ids(self):
"""Original class id of each category"""
return self._fv_meta["original_ids"]
@property
def palette(self):
"""Default palette to be used when color-coding semantic labels"""
return np.array(self._fv_meta["palette"], dtype=np.uint8)
@property
def img_sizes(self):
"""Size of each image of the dataset"""
return [img_desc["size"] for img_desc in self._fv_images]
@property
def img_categories(self):
"""Categories present in each image of the dataset"""
return [img_desc["cat"] for img_desc in self._fv_images]
@property
def dataset_name(self):
return "Kitti360"
def __len__(self):
if self.cfg.percentage < 1:
return int(len(self._fv_images) * self.cfg.percentage)
return len(self._fv_images)
def __getitem__(self, item):
img, bev_msk, bev_plabel, fv_msk, bev_weights_msk, bev_cat, bev_iscrowd, fv_cat, fv_iscrowd, fv_intrinsics, ego_pose, idx = self._load_item(item)
rec = self.transform(img=img, bev_msk=bev_msk, bev_plabel=bev_plabel, fv_msk=fv_msk, bev_weights_msk=bev_weights_msk, bev_cat=bev_cat,
bev_iscrowd=bev_iscrowd, fv_cat=fv_cat, fv_iscrowd=fv_iscrowd, fv_intrinsics=fv_intrinsics,
ego_pose=ego_pose)
size = (img.size[1], img.size[0])
# Close the file
img.close()
bev_msk.close()
fv_msk.close()
rec["index"] = idx
rec["size"] = size
rec['name'] = idx
return rec
def get_image_desc(self, idx):
"""Look up an image descriptor given the id"""
matching = [img_desc for img_desc in self._images if img_desc["id"] == idx]
if len(matching) == 1:
return matching[0]
else:
raise ValueError("No image found with id %s" % idx) |