Spaces:
Runtime error
Runtime error
Cherie Ho
commited on
Commit
·
a78b279
1
Parent(s):
90226e0
added robot position, toggle how many to display, just show data pair
Browse files
main.py
CHANGED
|
@@ -9,6 +9,9 @@ import matplotlib.pyplot as plt
|
|
| 9 |
import pandas as pd
|
| 10 |
import geopandas as gpd
|
| 11 |
from pyproj.transformer import Transformer
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
|
| 14 |
from MapItAnywhere.mia.bev import get_bev
|
|
@@ -72,8 +75,7 @@ def split_dataframe(df, chunk_size = 100):
|
|
| 72 |
chunks.append(df[i*chunk_size:(i+1)*chunk_size])
|
| 73 |
return chunks
|
| 74 |
|
| 75 |
-
async def fetch(location, filter_undistort, disable_cam_filter, map_length, mpp):
|
| 76 |
-
N=1
|
| 77 |
TOTAL_LOOKED_INTO_LIMIT = 10000
|
| 78 |
|
| 79 |
################ FPV
|
|
@@ -109,36 +111,37 @@ async def fetch(location, filter_undistort, disable_cam_filter, map_length, mpp)
|
|
| 109 |
|
| 110 |
dfs_meta.append(df_meta)
|
| 111 |
total_rows = sum([len(x) for x in dfs_meta])
|
| 112 |
-
if total_rows >
|
| 113 |
break
|
| 114 |
elif total_looked_into > TOTAL_LOOKED_INTO_LIMIT:
|
| 115 |
yield (f"Went through {total_looked_into} images and could not find images satisfying the filters."
|
| 116 |
"\nPlease rerun or run the data engine locally for bulk time consuming operations.", None, None)
|
| 117 |
return
|
| 118 |
-
if total_rows >
|
| 119 |
break
|
| 120 |
except:
|
| 121 |
pass
|
| 122 |
|
| 123 |
df_meta = pd.concat(dfs_meta)
|
| 124 |
-
df_meta = df_meta.sample(
|
| 125 |
|
| 126 |
# Calc derrivative attributes
|
| 127 |
-
df_meta["
|
| 128 |
lon1=df_meta["geometry.long"], lat1=df_meta["geometry.lat"],
|
| 129 |
lon2=df_meta["computed_geometry.long"], lat2=df_meta["computed_geometry.lat"]
|
| 130 |
)
|
| 131 |
|
| 132 |
-
df_meta["
|
| 133 |
df_meta["compass_angle"],
|
| 134 |
df_meta["computed_compass_angle"]
|
| 135 |
)
|
| 136 |
-
|
| 137 |
for index, row in df_meta.iterrows():
|
|
|
|
| 138 |
desc = list()
|
| 139 |
# Display attributes
|
| 140 |
keys = ["id", "geometry.long", "geometry.lat", "compass_angle",
|
| 141 |
-
"
|
| 142 |
"make", "model", "camera_type",
|
| 143 |
"quality_score"]
|
| 144 |
for k in keys:
|
|
@@ -148,96 +151,166 @@ async def fetch(location, filter_undistort, disable_cam_filter, map_length, mpp)
|
|
| 148 |
bullet = f"{k}: {v}"
|
| 149 |
desc.append(bullet)
|
| 150 |
metadata_fmt = "\n".join(desc)
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
projection = get_fpv.Projection(lat_center, lon_center, max_extent=200e3)
|
| 162 |
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
), axis=1)
|
| 213 |
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
jobs = jobs.to_dict(orient='records').copy()
|
| 231 |
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
get_bev.get_bev_from_bbox_worker(job_dict)
|
| 237 |
|
| 238 |
-
bev = plt.imread(rendered_mask_dir / f"{row['id']}.png")
|
| 239 |
|
| 240 |
-
yield
|
| 241 |
|
| 242 |
filter_pipeline = filters.FilterPipeline.load_from_yaml("MapItAnywhere/mia/fpv/filter_pipelines/mia.yaml")
|
| 243 |
filter_pipeline.verbose=False
|
|
@@ -261,15 +334,16 @@ logger.info(f"Current working directory: {os.getcwd()}, listdir: {os.listdir('.'
|
|
| 261 |
|
| 262 |
demo = gr.Interface(
|
| 263 |
fn=fetch,
|
| 264 |
-
inputs=[gr.Text("Pittsburgh, PA, United States", label="Location"),
|
| 265 |
-
gr.
|
| 266 |
-
gr.Checkbox(value=False, label="
|
|
|
|
| 267 |
gr.Slider(minimum=64, maximum=512, step=1, label="BEV Dimension", value=224),
|
| 268 |
gr.Slider(minimum=0.1, maximum=2, label="Meters Per Pixel", value=0.5)],
|
| 269 |
-
outputs=[gr.
|
| 270 |
-
title="MapItAnywhere (Data Engine
|
| 271 |
-
|
| 272 |
-
|
| 273 |
)
|
| 274 |
|
| 275 |
logger.info("Starting server")
|
|
|
|
| 9 |
import pandas as pd
|
| 10 |
import geopandas as gpd
|
| 11 |
from pyproj.transformer import Transformer
|
| 12 |
+
import cv2
|
| 13 |
+
from matplotlib import patches as mpatches
|
| 14 |
+
from matplotlib import gridspec
|
| 15 |
|
| 16 |
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
|
| 17 |
from MapItAnywhere.mia.bev import get_bev
|
|
|
|
| 75 |
chunks.append(df[i*chunk_size:(i+1)*chunk_size])
|
| 76 |
return chunks
|
| 77 |
|
| 78 |
+
async def fetch(location, num_images, filter_undistort, disable_cam_filter, map_length, mpp):
|
|
|
|
| 79 |
TOTAL_LOOKED_INTO_LIMIT = 10000
|
| 80 |
|
| 81 |
################ FPV
|
|
|
|
| 111 |
|
| 112 |
dfs_meta.append(df_meta)
|
| 113 |
total_rows = sum([len(x) for x in dfs_meta])
|
| 114 |
+
if total_rows > num_images:
|
| 115 |
break
|
| 116 |
elif total_looked_into > TOTAL_LOOKED_INTO_LIMIT:
|
| 117 |
yield (f"Went through {total_looked_into} images and could not find images satisfying the filters."
|
| 118 |
"\nPlease rerun or run the data engine locally for bulk time consuming operations.", None, None)
|
| 119 |
return
|
| 120 |
+
if total_rows > num_images:
|
| 121 |
break
|
| 122 |
except:
|
| 123 |
pass
|
| 124 |
|
| 125 |
df_meta = pd.concat(dfs_meta)
|
| 126 |
+
df_meta = df_meta.sample(num_images)
|
| 127 |
|
| 128 |
# Calc derrivative attributes
|
| 129 |
+
df_meta["loc_discrepancy"] = filters.haversine_np(
|
| 130 |
lon1=df_meta["geometry.long"], lat1=df_meta["geometry.lat"],
|
| 131 |
lon2=df_meta["computed_geometry.long"], lat2=df_meta["computed_geometry.lat"]
|
| 132 |
)
|
| 133 |
|
| 134 |
+
df_meta["angle_discrepancy"] = filters.angle_dist(
|
| 135 |
df_meta["compass_angle"],
|
| 136 |
df_meta["computed_compass_angle"]
|
| 137 |
)
|
| 138 |
+
img_list_to_show = list()
|
| 139 |
for index, row in df_meta.iterrows():
|
| 140 |
+
print("Processing image", row["id"])
|
| 141 |
desc = list()
|
| 142 |
# Display attributes
|
| 143 |
keys = ["id", "geometry.long", "geometry.lat", "compass_angle",
|
| 144 |
+
"loc_discrepancy", "angle_discrepancy",
|
| 145 |
"make", "model", "camera_type",
|
| 146 |
"quality_score"]
|
| 147 |
for k in keys:
|
|
|
|
| 151 |
bullet = f"{k}: {v}"
|
| 152 |
desc.append(bullet)
|
| 153 |
metadata_fmt = "\n".join(desc)
|
| 154 |
+
# yield metadata_fmt, None, None
|
| 155 |
+
image_urls = list(df_meta.set_index("id")["thumb_2048_url"].items())
|
| 156 |
+
num_fail = await get_fpv.fetch_images_pixels(image_urls, downloader, raw_image_dir)
|
| 157 |
+
if num_fail > 0:
|
| 158 |
+
logger.error(f"Failed to download {num_fail} images.")
|
| 159 |
+
|
| 160 |
+
seq_to_image_ids = df_meta.groupby('sequence')['id'].agg(list).to_dict()
|
| 161 |
+
lon_center = (bbox['east'] + bbox['west']) / 2
|
| 162 |
+
lat_center = (bbox['north'] + bbox['south']) / 2
|
| 163 |
+
projection = get_fpv.Projection(lat_center, lon_center, max_extent=200e3)
|
|
|
|
| 164 |
|
| 165 |
+
df_meta.index = df_meta["id"]
|
| 166 |
+
image_infos = df_meta.to_dict(orient="index")
|
| 167 |
+
process_sequence_args = get_fpv.default_cfg
|
| 168 |
|
| 169 |
+
if filter_undistort:
|
| 170 |
+
for seq_id, seq_image_ids in seq_to_image_ids.items():
|
| 171 |
+
try:
|
| 172 |
+
d, pi = get_fpv.process_sequence(
|
| 173 |
+
seq_image_ids,
|
| 174 |
+
image_infos,
|
| 175 |
+
projection,
|
| 176 |
+
process_sequence_args,
|
| 177 |
+
raw_image_dir,
|
| 178 |
+
out_image_dir,
|
| 179 |
+
)
|
| 180 |
+
if d is None or pi is None:
|
| 181 |
+
raise Exception("process_sequence returned None")
|
| 182 |
+
except Exception as e:
|
| 183 |
+
logger.error(f"Failed to process sequence {seq_id} skipping it. Error: {repr(e)}.")
|
| 184 |
+
|
| 185 |
+
fpv = plt.imread(out_image_dir/ f"{row['id']}_undistorted.jpg")
|
| 186 |
+
else:
|
| 187 |
+
print("Loading raw image")
|
| 188 |
+
fpv = plt.imread(raw_image_dir/ f"{row['id']}.jpg")
|
| 189 |
+
# yield metadata_fmt, fpv, None
|
| 190 |
+
################ BEV
|
| 191 |
+
df = df_meta
|
| 192 |
+
# convert pandas dataframe to geopandas dataframe
|
| 193 |
+
gdf = gpd.GeoDataFrame(df,
|
| 194 |
+
geometry=gpd.points_from_xy(
|
| 195 |
+
df['computed_geometry.long'],
|
| 196 |
+
df['computed_geometry.lat']),
|
| 197 |
+
crs=4326)
|
| 198 |
+
|
| 199 |
+
# convert the geopandas dataframe to UTM
|
| 200 |
+
utm_crs = gdf.estimate_utm_crs()
|
| 201 |
+
gdf_utm = gdf.to_crs(utm_crs)
|
| 202 |
+
transformer = Transformer.from_crs(utm_crs, 4326)
|
| 203 |
+
# load OSM data, if available
|
| 204 |
+
padding = 50
|
| 205 |
+
# calculate the required distance from the center to the edge of the image
|
| 206 |
+
# so that the image will not be out of bounds when we rotate it
|
| 207 |
+
map_length = map_length
|
| 208 |
+
map_length = np.ceil(np.sqrt(map_length**2 + map_length**2))
|
| 209 |
+
distance = map_length * mpp
|
| 210 |
+
|
| 211 |
+
# create bounding boxes for each point
|
| 212 |
+
gdf_utm['bounding_box_utm_p1'] = gdf_utm.apply(lambda row: (
|
| 213 |
+
row.geometry.x - distance - padding,
|
| 214 |
+
row.geometry.y - distance - padding,
|
| 215 |
+
), axis=1)
|
| 216 |
|
| 217 |
+
gdf_utm['bounding_box_utm_p2'] = gdf_utm.apply(lambda row: (
|
| 218 |
+
row.geometry.x + distance + padding,
|
| 219 |
+
row.geometry.y + distance + padding,
|
| 220 |
+
), axis=1)
|
|
|
|
| 221 |
|
| 222 |
+
# convert the bounding box back to lat, long
|
| 223 |
+
gdf_utm['bounding_box_lat_long_p1'] = gdf_utm.apply(lambda row: transformer.transform(*row['bounding_box_utm_p1']), axis=1)
|
| 224 |
+
gdf_utm['bounding_box_lat_long_p2'] = gdf_utm.apply(lambda row: transformer.transform(*row['bounding_box_utm_p2']), axis=1)
|
| 225 |
+
gdf_utm['bbox_min_lat'] = gdf_utm['bounding_box_lat_long_p1'].apply(lambda x: x[0])
|
| 226 |
+
gdf_utm['bbox_min_long'] = gdf_utm['bounding_box_lat_long_p1'].apply(lambda x: x[1])
|
| 227 |
+
gdf_utm['bbox_max_lat'] = gdf_utm['bounding_box_lat_long_p2'].apply(lambda x: x[0])
|
| 228 |
+
gdf_utm['bbox_max_long'] = gdf_utm['bounding_box_lat_long_p2'].apply(lambda x: x[1])
|
| 229 |
+
gdf_utm['bbox_formatted'] = gdf_utm.apply(lambda row: f"{row['bbox_min_long']},{row['bbox_min_lat']},{row['bbox_max_long']},{row['bbox_max_lat']}", axis=1)
|
| 230 |
+
|
| 231 |
+
# iterate over the dataframe and get BEV images
|
| 232 |
+
jobs = gdf_utm[['id', 'bbox_formatted', 'computed_compass_angle']] # only need the id and bbox_formatted columns for the jobs
|
| 233 |
+
jobs = jobs.to_dict(orient='records').copy()
|
| 234 |
+
|
| 235 |
+
get_bev.get_bev_from_bbox_worker_init(osm_cache_dir, bev_dir, semantic_mask_dir, rendered_mask_dir,
|
| 236 |
+
"MapItAnywhere/mia/bev/styles/mia.yml", map_length, mpp,
|
| 237 |
+
None, True, False, True, True, 1)
|
| 238 |
+
for job_dict in jobs:
|
| 239 |
+
get_bev.get_bev_from_bbox_worker(job_dict)
|
| 240 |
+
|
| 241 |
+
bev = cv2.imread(rendered_mask_dir / f"{row['id']}.png")
|
| 242 |
+
bev = cv2.cvtColor(bev, cv2.COLOR_BGR2RGB)
|
| 243 |
+
print("BEV shape", bev.shape)
|
| 244 |
+
|
| 245 |
+
img_list_to_show_i = [fpv, bev, metadata_fmt]
|
| 246 |
+
|
| 247 |
+
img_list_to_show.append(img_list_to_show_i)
|
| 248 |
+
|
| 249 |
+
# Make plt figure
|
| 250 |
+
plt_row = len(img_list_to_show)
|
| 251 |
+
print("plt_row", plt_row)
|
| 252 |
+
plt_col = 3
|
| 253 |
+
|
| 254 |
+
for i in range(plt_row):
|
| 255 |
+
|
| 256 |
+
fpv, bev, metadata_fmt = img_list_to_show[i]
|
| 257 |
+
if i == 0:
|
| 258 |
+
imgs = [fpv, bev]
|
| 259 |
+
ratios = [i.shape[1] / i.shape[0] for i in imgs] # W / H
|
| 260 |
+
ratios.append(0.5) # Metadata
|
| 261 |
+
figsize = [sum(ratios) * 4.5, 4.5 * plt_row]
|
| 262 |
+
dpi = 100
|
| 263 |
+
fig, ax = plt.subplots(
|
| 264 |
+
plt_row, plt_col, figsize=figsize, dpi=dpi, gridspec_kw={"width_ratios": ratios}
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
# Plot FPV image
|
| 268 |
+
if plt_row == 1:
|
| 269 |
+
ax0 = ax[0]
|
| 270 |
+
ax1 = ax[1]
|
| 271 |
+
ax2 = ax[2]
|
| 272 |
+
else:
|
| 273 |
+
ax0 = ax[i, 0]
|
| 274 |
+
ax1 = ax[i, 1]
|
| 275 |
+
ax2 = ax[i, 2]
|
| 276 |
+
ax0.imshow(fpv)
|
| 277 |
+
ax0.set_title("First Person View Image")
|
| 278 |
+
ax0.axis('off')
|
| 279 |
+
|
| 280 |
+
# Plot BEV image
|
| 281 |
+
ax1.imshow(bev)
|
| 282 |
+
# Put a white upward triangle at the center of the image
|
| 283 |
+
ax1.scatter(bev.shape[1]//2, bev.shape[0]//2, s=200, c='white', marker='^', edgecolors='black')
|
| 284 |
+
ax1.set_title("Bird's Eye View Map")
|
| 285 |
+
ax1.axis('off')
|
| 286 |
|
| 287 |
+
# Add legend to BEV image
|
| 288 |
+
class_colors = {
|
| 289 |
+
'Road': (68, 68, 68), # 0: Black
|
| 290 |
+
'Crossing': (244, 162, 97), # 1; Red
|
| 291 |
+
'Sidewalk': (233, 196, 106), # 2: Yellow
|
| 292 |
+
'Building': (231, 111, 81), # 5: Magenta
|
| 293 |
+
'Terrain': (42, 157, 143), # 7: Cyan
|
| 294 |
+
'Parking': (204, 204, 204), # 8: Dark Grey
|
| 295 |
+
}
|
| 296 |
+
patches = [mpatches.Patch(color=[c/255.0 for c in color], label=label) for label, color in class_colors.items()]
|
| 297 |
+
ax1.legend(handles=patches, loc='upper center', bbox_to_anchor=(0.5, -0.05), ncol=3)
|
| 298 |
+
|
| 299 |
+
# Plot metadata text
|
| 300 |
+
ax2.axis('off')
|
| 301 |
+
ax2.text(0.1, 0.5, metadata_fmt, fontsize=12, va='center', ha='left', wrap=True)
|
| 302 |
+
ax2.set_title("Metadata")
|
| 303 |
|
| 304 |
+
plt.tight_layout(pad=2.0)
|
| 305 |
+
|
|
|
|
| 306 |
|
| 307 |
+
# Save figure and then read
|
| 308 |
+
fig_img_path = 'fpv_bev.png'
|
| 309 |
+
fig.savefig(fig_img_path)
|
| 310 |
+
fig_img = plt.imread(fig_img_path)
|
|
|
|
| 311 |
|
|
|
|
| 312 |
|
| 313 |
+
yield fig_img
|
| 314 |
|
| 315 |
filter_pipeline = filters.FilterPipeline.load_from_yaml("MapItAnywhere/mia/fpv/filter_pipelines/mia.yaml")
|
| 316 |
filter_pipeline.verbose=False
|
|
|
|
| 334 |
|
| 335 |
demo = gr.Interface(
|
| 336 |
fn=fetch,
|
| 337 |
+
inputs=[gr.Text("Pittsburgh, PA, United States", label="Location (City, {Optional: State,} Country)"),
|
| 338 |
+
gr.Number(value=1, label="Number of Data Pairs to Generate (Max: 3)", minimum=1, maximum=3),
|
| 339 |
+
gr.Checkbox(value=False, label="Filter & Undistort (True in paper. Results in better robot position estimate, but slower.)"),
|
| 340 |
+
gr.Checkbox(value=False, label="Disable camera model filtering (Enabled in paper. Results in better quality labels, but slower.)"),
|
| 341 |
gr.Slider(minimum=64, maximum=512, step=1, label="BEV Dimension", value=224),
|
| 342 |
gr.Slider(minimum=0.1, maximum=2, label="Meters Per Pixel", value=0.5)],
|
| 343 |
+
outputs=[gr.Image(label="Data Pair")],
|
| 344 |
+
title="MapItAnywhere (MIA) Data Engine",
|
| 345 |
+
|
| 346 |
+
description="Use our Data Engine to sample first-person view images and bird's-eye view semantic map pairs from locations around the globe. Simply pick a location to see the results! For faster bulk downloads and more stringent filtering, visit our repository and follow the instructions to run the data curation locally."
|
| 347 |
)
|
| 348 |
|
| 349 |
logger.info("Starting server")
|