import warnings warnings.simplefilter(action='ignore', category=FutureWarning) import PyPDF2 import gradio as gr from langchain.prompts import PromptTemplate from pathlib import Path from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint from huggingface_hub import login from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import os login(token=os.getenv('HUGGINGFACE_TOKEN')) # Configuración del modelo de resumen llm = HuggingFaceEndpoint( repo_id="mistralai/Mistral-7B-Instruct-v0.3", task="text-generation", max_new_tokens=4096, temperature=0.5, do_sample=False, model_kwargs={"use_auth_token": HUGGINGFACE_TOKEN} # Pasar el token como parte de los argumentos del modelo ) llm_engine_hf = ChatHuggingFace(llm=llm) # Configuración del modelo de clasificación tokenizer = AutoTokenizer.from_pretrained("mrm8488/legal-longformer-base-8192-spanish") model = AutoModelForSequenceClassification.from_pretrained("mrm8488/legal-longformer-base-8192-spanish") id2label = {0: "multas", 1: "politicas_de_privacidad", 2: "contratos", 3: "denuncias", 4: "otros"} def read_pdf(file_path): pdf_reader = PyPDF2.PdfReader(file_path) text = "" for page in range(len(pdf_reader.pages)): text += pdf_reader.pages[page].extract_text() return text def summarize(file): # Leer el contenido del archivo subido file_path = file.name if file_path.endswith('.pdf'): text = read_pdf(file_path) else: with open(file_path, 'r', encoding='utf-8') as f: text = f.read() template = ''' Please carefully read the following document: {TEXT} After reading through the document, identify the key points and main ideas covered in the text. Organize these key points into a concise bulleted list that summarizes the essential information from the document. The summary should have a maximum of 10 bullet points. Your goal is to be comprehensive in capturing the core content of the document, while also being concise in how you express each summary point. Omit minor details and focus on the central themes and important facts. ''' prompt = PromptTemplate( template=template, input_variables=['TEXT'] ) formatted_prompt = prompt.format(TEXT=text) output_summary = llm_engine_hf.invoke(formatted_prompt) return output_summary.content def classify_text(text): inputs = tokenizer(text, return_tensors="pt", max_length=4096, truncation=True, padding="max_length") model.eval() with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits predicted_class_id = logits.argmax(dim=-1).item() predicted_label = id2label[predicted_class_id] return predicted_label def translate(file, target_language): # Leer el contenido del archivo subido file_path = file.name if file_path.endswith('.pdf'): text = read_pdf(file_path) else: with open(file_path, 'r', encoding='utf-8') as f: text = f.read() template = ''' Please translate the following document to {LANGUAGE}: {TEXT} Ensure that the translation is accurate and preserves the original meaning of the document. ''' prompt = PromptTemplate( template=template, input_variables=['TEXT', 'LANGUAGE'] ) formatted_prompt = prompt.format(TEXT=text, LANGUAGE=target_language) translated_text = llm_engine_hf.invoke(formatted_prompt) return translated_text.content def process_file(file, action, target_language=None): if action == "Resumen": return summarize(file) elif action == "Clasificar": file_path = file.name if file_path.endswith('.pdf'): text = read_pdf(file_path) else: with open(file_path, 'r', encoding='utf-8') as f: text = f.read() return classify_text(text) elif action == "Traducir": return translate(file, target_language) else: return "Acción no válida" def download_text(output_text, filename='output.txt'): if output_text: file_path = Path(filename) with open(file_path, 'w', encoding='utf-8') as f: f.write(output_text) return file_path else: return None def create_download_file(output_text, filename='output.txt'): file_path = download_text(output_text, filename) return str(file_path) if file_path else None # Crear la interfaz de Gradio with gr.Blocks() as demo: gr.Markdown("## Document Processor") with gr.Row(): with gr.Column(): file = gr.File(label="Subir un archivo") action = gr.Radio(label="Seleccione una acción", choices=["Resumen", "Clasificar", "Traducir"]) target_language = gr.Dropdown(label="Seleccionar idioma de traducción", choices=["en", "fr", "de"], visible=False) with gr.Column(): output_text = gr.Textbox(label="Resultado", lines=20) def update_language_dropdown(action): if action == "Traducir": return gr.update(visible=True) else: return gr.update(visible=False) action.change(update_language_dropdown, inputs=action, outputs=target_language) submit_button = gr.Button("Procesar") submit_button.click(process_file, inputs=[file, action, target_language], outputs=output_text) def generate_file(): summary_text = output_text.value filename = 'translation.txt' if action.value == 'Traducir' else 'summary.txt' file_path = download_text(summary_text, filename) return file_path download_button = gr.Button("Descargar Resultado") download_button.click( fn=generate_file, inputs=[], outputs=gr.File() ) # Ejecutar la aplicación Gradio demo.launch(share=True)