manuelcozar55's picture
Update app.py
b169e9b verified
raw
history blame
5.22 kB
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
import PyPDF2
import gradio as gr
from langchain.prompts import PromptTemplate
from langchain.chains.summarize import load_summarize_chain
from huggingface_hub import login
from pathlib import Path
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import os
login(token=os.getenv('HUGGINGFACE_TOKEN'))
# Configuraci贸n del modelo LLM
llm = HuggingFaceEndpoint(
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
task="text-generation",
max_new_tokens=4096,
temperature=0.5,
do_sample=False,
)
llm_engine_hf = ChatHuggingFace(llm=llm)
# Configuraci贸n del modelo de clasificaci贸n
tokenizer = AutoTokenizer.from_pretrained("mrm8488/legal-longformer-base-8192-spanish")
model = AutoModelForSequenceClassification.from_pretrained("mrm8488/legal-longformer-base-8192-spanish")
id2label = {0: "multas", 1: "politicas_de_privacidad", 2: "contratos", 3: "denuncias", 4: "otros"}
def read_pdf(file_path):
pdf_reader = PyPDF2.PdfReader(file_path)
text = ""
for page in range(len(pdf_reader.pages)):
text += pdf_reader.pages[page].extract_text()
return text
def summarize(file):
# Leer el contenido del archivo subido
file_path = file.name
if file_path.endswith('.pdf'):
text = read_pdf(file_path)
else:
with open(file_path, 'r', encoding='utf-8') as f:
text = f.read()
template = '''
Por favor, lea detenidamente el siguiente documento:
<document>
{TEXT}
</document>
Despu茅s de leer el documento, identifique los puntos clave y las ideas principales cubiertas en el texto. Organice estos puntos clave en una lista con vi帽etas concisa que resuma la informaci贸n esencial del documento. El resumen debe tener un m谩ximo de 10 puntos.
Su objetivo es ser exhaustivo en la captura del contenido central del documento, mientras que tambi茅n es conciso en la expresi贸n de cada punto del resumen. Omita los detalles menores y conc茅ntrese en los temas centrales y hechos importantes.
'''
prompt = PromptTemplate(
template=template,
input_variables=['TEXT']
)
formatted_prompt = prompt.format(TEXT=text)
output_summary = llm_engine_hf.invoke(formatted_prompt)
return f"Prompt:\n{formatted_prompt}\n\nResumen:\n{output_summary.content}"
def classify_text(text):
inputs = tokenizer(text, return_tensors="pt", max_length=4096, truncation=True, padding="max_length")
model.eval()
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class_id = logits.argmax(dim=-1).item()
predicted_label = id2label[predicted_class_id]
return predicted_label
def translate(file, target_language):
# Leer el contenido del archivo subido
file_path = file.name
if file_path.endswith('.pdf'):
text = read_pdf(file_path)
else:
with open(file_path, 'r', encoding='utf-8') as f:
text = f.read()
template = '''
Por favor, traduzca el siguiente documento al {LANGUAGE}:
<document>
{TEXT}
</document>
Aseg煤rese de que la traducci贸n sea precisa y conserve el significado original del documento.
'''
prompt = PromptTemplate(
template=template,
input_variables=['TEXT', 'LANGUAGE']
)
formatted_prompt = prompt.format(TEXT=text, LANGUAGE=target_language)
translated_text = llm_engine_hf.invoke(formatted_prompt)
return f"Prompt:\n{formatted_prompt}\n\nTraducci贸n:\n{translated_text.content}"
def process_file(file, action, target_language=None):
if action == "Resumen":
return summarize(file)
elif action == "Clasificar":
file_path = file.name
if file_path.endswith('.pdf'):
text = read_pdf(file_path)
else:
with open(file_path, 'r', encoding='utf-8') as f:
text = f.read()
return classify_text(text)
elif action == "Traducir":
return translate(file, target_language)
else:
return "Acci贸n no v谩lida"
# Crear la interfaz de Gradio
with gr.Blocks() as demo:
gr.Markdown("## Procesador de Documentos")
with gr.Row():
with gr.Column():
file = gr.File(label="Subir un archivo")
action = gr.Radio(label="Seleccione una acci贸n", choices=["Resumen", "Clasificar", "Traducir"])
target_language = gr.Dropdown(label="Seleccionar idioma de traducci贸n", choices=["en", "fr", "de"], visible=False)
with gr.Column():
output_text = gr.Textbox(label="Resultado", lines=20)
def update_language_dropdown(action):
if action == "Traducir":
return gr.update(visible=True)
else:
return gr.update(visible=False)
action.change(update_language_dropdown, inputs=action, outputs=target_language)
submit_button = gr.Button("Procesar")
submit_button.click(process_file, inputs=[file, action, target_language], outputs=output_text)
# Ejecutar la aplicaci贸n Gradio
demo.launch(share=True)