File size: 5,951 Bytes
23a1957
 
 
7413e10
23a1957
 
 
 
4387fb1
23a1957
 
e988252
 
97ab717
cc439f4
4387fb1
23a1957
 
 
 
 
 
4387fb1
7413e10
23a1957
 
 
 
 
 
 
 
 
 
 
 
 
 
cc439f4
97ab717
 
 
 
 
9bd74d6
97ab717
 
 
 
4387fb1
23a1957
97ab717
23a1957
4387fb1
 
23a1957
7413e10
23a1957
 
 
7413e10
23a1957
 
 
 
4387fb1
cc439f4
23a1957
 
 
 
 
 
 
 
97ab717
 
 
 
 
 
 
 
 
 
cc439f4
23a1957
4387fb1
23a1957
 
 
4387fb1
23a1957
 
 
 
 
 
 
 
 
 
4387fb1
23a1957
97ab717
23a1957
97ab717
23a1957
97ab717
 
 
 
 
 
6a25acd
23a1957
97ab717
23a1957
 
 
97ab717
 
 
 
 
 
 
 
 
 
 
 
 
23a1957
ba072b0
4387fb1
23a1957
 
 
 
 
 
 
 
97ab717
23a1957
97ab717
23a1957
97ab717
23a1957
97ab717
ba072b0
97ab717
23a1957
 
97ab717
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23a1957
4387fb1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)

import PyPDF2
import gradio as gr
from langchain.prompts import PromptTemplate
from pathlib import Path
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from huggingface_hub import login
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import os

login(token=os.getenv('HUGGINGFACE_TOKEN'))

# Configuraci贸n del modelo de resumen
llm = HuggingFaceEndpoint(
    repo_id="mistralai/Mistral-7B-Instruct-v0.3",
    task="text-generation",
    max_new_tokens=4096,
    temperature=0.5,
    do_sample=False,
    model_kwargs={"use_auth_token": HUGGINGFACE_TOKEN}  # Pasar el token como parte de los argumentos del modelo
)
llm_engine_hf = ChatHuggingFace(llm=llm)

# Configuraci贸n del modelo de clasificaci贸n
tokenizer = AutoTokenizer.from_pretrained("mrm8488/legal-longformer-base-8192-spanish")
model = AutoModelForSequenceClassification.from_pretrained("mrm8488/legal-longformer-base-8192-spanish")

id2label = {0: "multas", 1: "politicas_de_privacidad", 2: "contratos", 3: "denuncias", 4: "otros"}

def read_pdf(file_path):
    pdf_reader = PyPDF2.PdfReader(file_path)
    text = ""
    for page in range(len(pdf_reader.pages)):
        text += pdf_reader.pages[page].extract_text()
    return text

def summarize(file):
    # Leer el contenido del archivo subido
    file_path = file.name
    if file_path.endswith('.pdf'):
        text = read_pdf(file_path)
    else:
        with open(file_path, 'r', encoding='utf-8') as f:
            text = f.read()
            
    template = '''
    Please carefully read the following document:
<document>
{TEXT}
</document>
After reading through the document, identify the key points and main ideas covered in the text. Organize these key points into a concise bulleted list that summarizes the essential information from the document. The summary should have a maximum of 10 bullet points.
Your goal is to be comprehensive in capturing the core content of the document, while also being concise in how you express each summary point. Omit minor details and focus on the central themes and important facts.
    '''
    
    prompt = PromptTemplate(
        template=template,
        input_variables=['TEXT']    
    )
    
    formatted_prompt = prompt.format(TEXT=text)
    output_summary = llm_engine_hf.invoke(formatted_prompt)
    
    return output_summary.content

def classify_text(text):
    inputs = tokenizer(text, return_tensors="pt", max_length=4096, truncation=True, padding="max_length")
    model.eval()
    with torch.no_grad():
        outputs = model(**inputs)
    logits = outputs.logits
    predicted_class_id = logits.argmax(dim=-1).item()
    predicted_label = id2label[predicted_class_id]
    return predicted_label

def translate(file, target_language):
    # Leer el contenido del archivo subido
    file_path = file.name
    if file_path.endswith('.pdf'):
        text = read_pdf(file_path)
    else:
        with open(file_path, 'r', encoding='utf-8') as f:
            text = f.read()

    template = '''
    Please translate the following document to {LANGUAGE}:
<document>
{TEXT}
</document>
Ensure that the translation is accurate and preserves the original meaning of the document.
    '''
    
    prompt = PromptTemplate(
        template=template,
        input_variables=['TEXT', 'LANGUAGE']    
    )
    
    formatted_prompt = prompt.format(TEXT=text, LANGUAGE=target_language)
    translated_text = llm_engine_hf.invoke(formatted_prompt)
    
    return translated_text.content

def process_file(file, action, target_language=None):
    if action == "Resumen":
        return summarize(file)
    elif action == "Clasificar":
        file_path = file.name
        if file_path.endswith('.pdf'):
            text = read_pdf(file_path)
        else:
            with open(file_path, 'r', encoding='utf-8') as f:
                text = f.read()
        return classify_text(text)
    elif action == "Traducir":
        return translate(file, target_language)
    else:
        return "Acci贸n no v谩lida"

def download_text(output_text, filename='output.txt'):
    if output_text:
        file_path = Path(filename)
        with open(file_path, 'w', encoding='utf-8') as f:
            f.write(output_text)
        return file_path
    else:
        return None

def create_download_file(output_text, filename='output.txt'):
    file_path = download_text(output_text, filename)
    return str(file_path) if file_path else None

# Crear la interfaz de Gradio
with gr.Blocks() as demo:
    gr.Markdown("## Document Processor")

    with gr.Row():
        with gr.Column():
            file = gr.File(label="Subir un archivo")
            action = gr.Radio(label="Seleccione una acci贸n", choices=["Resumen", "Clasificar", "Traducir"])
            target_language = gr.Dropdown(label="Seleccionar idioma de traducci贸n", choices=["en", "fr", "de"], visible=False)
        
        with gr.Column():
            output_text = gr.Textbox(label="Resultado", lines=20)

    def update_language_dropdown(action):
        if action == "Traducir":
            return gr.update(visible=True)
        else:
            return gr.update(visible=False)
    
    action.change(update_language_dropdown, inputs=action, outputs=target_language)
    
    submit_button = gr.Button("Procesar")
    submit_button.click(process_file, inputs=[file, action, target_language], outputs=output_text)

    def generate_file():
        summary_text = output_text.value
        filename = 'translation.txt' if action.value == 'Traducir' else 'summary.txt'
        file_path = download_text(summary_text, filename)
        return file_path

    download_button = gr.Button("Descargar Resultado")
    download_button.click(
        fn=generate_file,
        inputs=[],
        outputs=gr.File()
    )

# Ejecutar la aplicaci贸n Gradio
demo.launch(share=True)