File size: 8,463 Bytes
3ceffca
a876827
 
 
 
 
 
 
62d5ecf
3ceffca
 
 
 
 
30ed7b0
ec25508
 
 
de5e6eb
a876827
 
 
 
de5e6eb
a876827
 
 
3ceffca
30ed7b0
 
 
a876827
 
 
3ceffca
30ed7b0
 
 
 
 
 
 
 
 
 
 
 
ec25508
3ceffca
d7ccb12
 
 
 
 
 
 
 
 
 
 
 
 
30ed7b0
a876827
 
 
 
 
 
30ed7b0
 
 
a876827
 
 
 
 
 
30ed7b0
3ceffca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6bfd3e
ec25508
46a011a
052856c
ec25508
46a011a
d6bfd3e
ec25508
 
 
d6bfd3e
46a011a
 
 
 
d6bfd3e
ec25508
 
 
d6bfd3e
ec25508
 
d6bfd3e
ec25508
 
d6bfd3e
ec25508
d6bfd3e
 
ec25508
d7ccb12
 
46a011a
ec25508
a876827
 
 
 
 
 
ec25508
 
 
 
 
 
 
46a011a
ec25508
46a011a
ec25508
a876827
 
 
 
 
 
ec25508
46a011a
 
d6bfd3e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import streamlit as st
from huggingface_hub import snapshot_download
from pathlib import Path
from mistral_inference.model import Transformer
from mistral_inference.generate import generate
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from PyPDF2 import PdfReader
from docx import Document
import csv
import json
import os
import torch
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS

# Descargar y configurar el modelo
mistral_models_path = Path.home().joinpath('mistral_models', '7B-Instruct-v0.3')
mistral_models_path.mkdir(parents=True, exist_ok=True)
snapshot_download(repo_id="mistralai/Mistral-7B-Instruct-v0.3", allow_patterns=["params.json", "consolidated.safetensors", "tokenizer.model.v3"], local_dir=mistral_models_path)

# Configurar el modelo y el tokenizador
tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model.v3")
model = Transformer.from_folder(mistral_models_path)

# Configuraci贸n del modelo de clasificaci贸n
@st.cache_resource
def load_classification_model():
    tokenizer_cls = AutoTokenizer.from_pretrained("mrm8488/legal-longformer-base-8192-spanish")
    model_cls = AutoModelForSequenceClassification.from_pretrained("mrm8488/legal-longformer-base-8192-spanish")
    return model_cls, tokenizer_cls

classification_model, classification_tokenizer = load_classification_model()

id2label = {0: "multas", 1: "politicas_de_privacidad", 2: "contratos", 3: "denuncias", 4: "otros"}

def classify_text(text):
    inputs = classification_tokenizer(text, return_tensors="pt", max_length=4096, truncation=True, padding="max_length")
    classification_model.eval()
    with torch.no_grad():
        outputs = classification_model(**inputs)
    logits = outputs.logits
    predicted_class_id = logits.argmax(dim=-1).item()
    predicted_label = id2label[predicted_class_id]
    return predicted_label

def load_json_documents(category):
    with open(f"./{category}.json", "r", encoding="utf-8") as f:
        data = json.load(f)["questions_and_answers"]
        documents = [entry["question"] + " " + entry["answer"] for entry in data]
    return documents

def create_vector_store(docs):
    embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-l6-v2", model_kwargs={"device": "cpu"})
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)
    split_docs = text_splitter.split_text(docs)
    vector_store = FAISS.from_texts(split_docs, embeddings)
    return vector_store

def translate(text, target_language):
    completion_request = ChatCompletionRequest(
        messages=[UserMessage(content=f"Por favor, traduzca el siguiente documento al {target_language}:\n{text}\nAseg煤rese de que la traducci贸n sea precisa y conserve el significado original del documento.")]
    )
    tokens = tokenizer.encode_chat_completion(completion_request).tokens
    out_tokens, _ = generate([tokens], model, max_tokens=512, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
    translated_text = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])
    return translated_text

def summarize(text, length):
    completion_request = ChatCompletionRequest(
        messages=[UserMessage(content=f"Por favor, haga un resumen {length} del siguiente documento:\n{text}\nAseg煤rese de que el resumen sea conciso y conserve el significado original del documento.")]
    )
    tokens = tokenizer.encode_chat_completion(completion_request).tokens
    out_tokens, _ = generate([tokens], model, max_tokens=512, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
    summarized_text = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])
    return summarized_text

def handle_uploaded_file(uploaded_file):
    try:
        if uploaded_file.name.endswith(".txt"):
            text = uploaded_file.read().decode("utf-8")
        elif uploaded_file.name.endswith(".pdf"):
            reader = PdfReader(uploaded_file)
            text = ""
            for page in range(len(reader.pages)):
                text += reader.pages[page].extract_text()
        elif uploaded_file.name.endswith(".docx"):
            doc = Document(uploaded_file)
            text = "\n".join([para.text for para in doc.paragraphs])
        elif uploaded_file.name.endswith(".csv"):
            text = ""
            content = uploaded_file.read().decode("utf-8").splitlines()
            reader = csv.reader(content)
            text = " ".join([" ".join(row) for row in reader])
        elif uploaded_file.name.endswith(".json"):
            data = json.load(uploaded_file)
            text = json.dumps(data, indent=4)
        else:
            text = "Tipo de archivo no soportado."
        return text
    except Exception as e:
        return str(e)

def main():
    st.title("LexAIcon")
    st.write("Puedes conversar con este chatbot basado en Mistral-7B-Instruct y subir archivos para que el chatbot los procese.")

    if "messages" not in st.session_state:
        st.session_state["messages"] = []

    with st.sidebar:
        st.text_input("HuggingFace Token", value=huggingface_token, type="password", key="huggingface_token")
        st.caption("[Consigue un HuggingFace Token](https://huggingface.co/settings/tokens)")

    user_input = st.text_input("Introduce tu consulta:", "")
    
    if user_input:
        st.session_state.messages.append({"role": "user", "content": user_input})

        operation = st.radio("Selecciona una operaci贸n", ["Resumir", "Traducir", "Explicar"])
        target_language = None
        summary_length = None

        if operation == "Traducir":
            target_language = st.selectbox("Selecciona el idioma de traducci贸n", ["espa帽ol", "ingl茅s", "franc茅s", "alem谩n"])

        if operation == "Resumir":
            summary_length = st.selectbox("Selecciona la longitud del resumen", ["corto", "medio", "largo"])

        if uploaded_files := st.file_uploader("Sube un archivo", type=["txt", "pdf", "docx", "csv", "json"], accept_multiple_files=True):
            for uploaded_file in uploaded_files:
                file_content = handle_uploaded_file(uploaded_file)
                classification = classify_text(file_content)
                docs = load_json_documents(classification)
                vector_store = create_vector_store(docs)
                search_docs = vector_store.similarity_search(user_input)
                context = " ".join([doc.page_content for doc in search_docs])
                completion_request = ChatCompletionRequest(
                    messages=[UserMessage(content=f"Contexto: {context}\n\nPregunta: {user_input}")]
                )
                tokens = tokenizer.encode_chat_completion(completion_request).tokens
                out_tokens, _ = generate([tokens], model, max_tokens=512, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
                bot_response = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])
        elif operation == "Resumir":
            if summary_length == "corto":
                length = "de aproximadamente 50 palabras"
            elif summary_length == "medio":
                length = "de aproximadamente 100 palabras"
            elif summary_length == "largo":
                length = "de aproximadamente 500 palabras"
            bot_response = summarize(user_input, length)
        elif operation == "Traducir":
            bot_response = translate(user_input, target_language)
        else:
            completion_request = ChatCompletionRequest(
                messages=[UserMessage(content=user_input)]
            )
            tokens = tokenizer.encode_chat_completion(completion_request).tokens
            out_tokens, _ = generate([tokens], model, max_tokens=512, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
            bot_response = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])

        st.session_state.messages.append({"role": "assistant", "content": bot_response})
        st.write(f"**Assistant:** {bot_response}")

if __name__ == "__main__":
    main()