Update app.py
Browse files
app.py
CHANGED
|
@@ -15,13 +15,32 @@ from torch.utils.data import DataLoader
|
|
| 15 |
from tqdm import tqdm
|
| 16 |
from transformers import AutoProcessor
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
@spaces.GPU
|
| 20 |
def search(query: str, ds, images, k):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
qs = []
|
| 22 |
with torch.no_grad():
|
| 23 |
batch_query = process_queries(processor, [query], mock_image)
|
| 24 |
-
batch_query = {k: v.to(
|
| 25 |
embeddings_query = model(**batch_query)
|
| 26 |
qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
|
| 27 |
|
|
@@ -55,29 +74,24 @@ def index(files, ds):
|
|
| 55 |
collate_fn=lambda x: process_images(processor, x),
|
| 56 |
)
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
print(f"model device: {model.device}")
|
| 59 |
|
| 60 |
-
model = model.to(model.device)
|
| 61 |
|
| 62 |
for batch_doc in tqdm(dataloader):
|
| 63 |
with torch.no_grad():
|
| 64 |
-
batch_doc = {k: v.to(
|
| 65 |
print(f"model device: {model.device}")
|
| 66 |
print(f"model device: {batch_doc['input_ids']}")
|
| 67 |
embeddings_doc = model(**batch_doc)
|
| 68 |
ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
|
| 69 |
return f"Uploaded and converted {len(images)} pages", ds, images
|
| 70 |
|
| 71 |
-
# Load model
|
| 72 |
-
model_name = "vidore/colpali"
|
| 73 |
-
token = os.environ.get("HF_TOKEN")
|
| 74 |
-
model = ColPali.from_pretrained(
|
| 75 |
-
"google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cuda", token = token).eval()
|
| 76 |
-
|
| 77 |
-
model.load_adapter(model_name)
|
| 78 |
-
processor = AutoProcessor.from_pretrained(model_name, token = token)
|
| 79 |
|
| 80 |
-
mock_image = Image.new("RGB", (448, 448), (255, 255, 255))
|
| 81 |
|
| 82 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 83 |
gr.Markdown("# ColPali: Efficient Document Retrieval with Vision Language Models 📚")
|
|
|
|
| 15 |
from tqdm import tqdm
|
| 16 |
from transformers import AutoProcessor
|
| 17 |
|
| 18 |
+
# Load model
|
| 19 |
+
model_name = "vidore/colpali"
|
| 20 |
+
token = os.environ.get("HF_TOKEN")
|
| 21 |
+
model = ColPali.from_pretrained(
|
| 22 |
+
"google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cuda", token = token).eval()
|
| 23 |
+
|
| 24 |
+
model.load_adapter(model_name)
|
| 25 |
+
processor = AutoProcessor.from_pretrained(model_name, token = token)
|
| 26 |
+
|
| 27 |
+
mock_image = Image.new("RGB", (448, 448), (255, 255, 255))
|
| 28 |
+
|
| 29 |
|
| 30 |
@spaces.GPU
|
| 31 |
def search(query: str, ds, images, k):
|
| 32 |
+
|
| 33 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 34 |
+
if device != model.device:
|
| 35 |
+
model.to(device)
|
| 36 |
+
|
| 37 |
+
print(f"model device: {model.device}")
|
| 38 |
+
|
| 39 |
+
|
| 40 |
qs = []
|
| 41 |
with torch.no_grad():
|
| 42 |
batch_query = process_queries(processor, [query], mock_image)
|
| 43 |
+
batch_query = {k: v.to(device) for k, v in batch_query.items()}
|
| 44 |
embeddings_query = model(**batch_query)
|
| 45 |
qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
|
| 46 |
|
|
|
|
| 74 |
collate_fn=lambda x: process_images(processor, x),
|
| 75 |
)
|
| 76 |
|
| 77 |
+
|
| 78 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 79 |
+
if device != model.device:
|
| 80 |
+
model.to(device)
|
| 81 |
+
|
| 82 |
print(f"model device: {model.device}")
|
| 83 |
|
|
|
|
| 84 |
|
| 85 |
for batch_doc in tqdm(dataloader):
|
| 86 |
with torch.no_grad():
|
| 87 |
+
batch_doc = {k: v.to(device) for k, v in batch_doc.items()}
|
| 88 |
print(f"model device: {model.device}")
|
| 89 |
print(f"model device: {batch_doc['input_ids']}")
|
| 90 |
embeddings_doc = model(**batch_doc)
|
| 91 |
ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
|
| 92 |
return f"Uploaded and converted {len(images)} pages", ds, images
|
| 93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
|
|
|
| 95 |
|
| 96 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 97 |
gr.Markdown("# ColPali: Efficient Document Retrieval with Vision Language Models 📚")
|