Spaces:
Runtime error
Runtime error
| import spacy | |
| import streamlit as st | |
| # from transformers import AutoModelForTokenClassification, AutoTokenizer, pipeline | |
| def render_entities(entities): | |
| colors = {"LOCATION": "#5cff84"} | |
| options = {"ents": ["LOCATION"], "colors": colors} | |
| html = spacy.displacy.render(entities, style="ent", options=options, manual=True) | |
| html = html.replace("\n", " ") | |
| return html | |
| HTML_WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem; margin-bottom: 2.5rem">{}</div>""" | |
| st.header("Location Entity Recognition Demo πππ") | |
| threshold = st.sidebar.slider("Threshold", value=0.5, min_value=0.0, max_value=1.0) | |
| display_probabilities = st.sidebar.checkbox("Display probabilities") | |
| text = st.text_area("Text input", value="This text is about Malaria", height=400) | |
| nlp = spacy.load("en_core_web_trf") | |
| doc = nlp(text) | |
| ents = [ | |
| {"start": ent.start_char, "end": ent.end_char, "label": "LOCATION"} | |
| for ent in doc.ents | |
| ] | |
| foo = {"text": text, "ents": ents} | |
| print(ents) | |
| print(doc.ents) | |
| html = render_entities(foo) | |
| st.write(HTML_WRAPPER.format(html), unsafe_allow_html=True) | |