Spaces:
Sleeping
Sleeping
| import os | |
| import torch | |
| import gradio as gr | |
| import spaces | |
| from huggingface_hub import InferenceClient | |
| from langchain.embeddings import HuggingFaceEmbeddings | |
| from langchain.vectorstores import Chroma | |
| from langchain.prompts import PromptTemplate | |
| # Verify PyTorch version compatibility | |
| TORCH_VERSION = torch.__version__ | |
| SUPPORTED_TORCH_VERSIONS = ['2.0.1', '2.1.2', '2.2.2', '2.4.0'] | |
| if TORCH_VERSION.rsplit('+')[0] not in SUPPORTED_TORCH_VERSIONS: | |
| print(f"Warning: Current PyTorch version {TORCH_VERSION} may not be compatible with ZeroGPU. " | |
| f"Supported versions are: {', '.join(SUPPORTED_TORCH_VERSIONS)}") | |
| # Initialize components outside of GPU scope | |
| client = InferenceClient("meta-llama/Llama-3.2-3B-Instruct") | |
| embeddings = HuggingFaceEmbeddings( | |
| model_name="sentence-transformers/all-MiniLM-L6-v2", | |
| model_kwargs={"device": "cpu"} # Keep embeddings on CPU | |
| ) | |
| # Load database | |
| db = Chroma( | |
| persist_directory="db", | |
| embedding_function=embeddings | |
| ) | |
| # Prompt templates | |
| DEFAULT_SYSTEM_PROMPT = """ | |
| Based on the information in this document provided in context, answer the question as accurately as possible in 1 or 2 lines. If the information is not in the context, | |
| respond with "I don't know" or a similar acknowledgment that the answer is not available. | |
| """.strip() | |
| def generate_prompt(prompt: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT) -> str: | |
| return f""" | |
| [INST] <<SYS>> | |
| {system_prompt} | |
| <</SYS>> | |
| {prompt} [/INST] | |
| """.strip() | |
| template = generate_prompt( | |
| """ | |
| {context} | |
| Question: {question} | |
| """, | |
| system_prompt="Use the following pieces of context to answer the question at the end. Do not provide commentary or elaboration more than 1 or 2 lines.?" | |
| ) | |
| prompt_template = PromptTemplate(template=template, input_variables=["context", "question"]) | |
| # Reduced duration for faster queue priority | |
| def respond( | |
| message, | |
| history, | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| """GPU-accelerated response generation""" | |
| try: | |
| # Retrieve context (CPU operation) | |
| docs = db.similarity_search(message, k=2) | |
| context = "\n".join([doc.page_content for doc in docs]) | |
| # Format prompt | |
| formatted_prompt = prompt_template.format( | |
| context=context, | |
| question=message | |
| ) | |
| # Stream response (GPU operation) | |
| response = "" | |
| for message in client.text_generation( | |
| prompt=formatted_prompt, | |
| max_new_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ): | |
| response += message | |
| yield response | |
| except Exception as e: | |
| yield f"An error occurred: {str(e)}" | |
| # Create Gradio interface | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox( | |
| value=DEFAULT_SYSTEM_PROMPT, | |
| label="System Message", | |
| lines=3, | |
| visible=False | |
| ), | |
| gr.Slider( | |
| minimum=1, | |
| maximum=2048, | |
| value=500, | |
| step=1, | |
| label="Max new tokens" | |
| ), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=4.0, | |
| value=0.1, | |
| step=0.1, | |
| label="Temperature" | |
| ), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)" | |
| ), | |
| ], | |
| title="ROS2 Expert Assistant", | |
| description="Ask questions about ROS2, navigation, and robotics. I'll provide concise answers based on the available documentation.", | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |