File size: 4,558 Bytes
fe93c00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import gradio as gr
import spaces
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load the model and tokenizer
model_name = "manjunathshiva/ICD11-Clinical-Terminology-16bit"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)

@spaces.GPU(duration=120)
def generate_text(prompt, max_length, temperature):
    messages = [
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": prompt}
    ]
    formatted_prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)

    inputs = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)

    outputs = model.generate(
        **inputs,
        max_new_tokens=max_length,
        do_sample=True,
        temperature=temperature,
        top_k=100,
        top_p=0.95,
    )

    return tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)


# Custom CSS
css = """
body {
    background-color: #1a1a2e;
    color: #e0e0e0;
    font-family: 'Arial', sans-serif;
}
.container {
    max-width: 900px;
    margin: auto;
    padding: 20px;
}
.gradio-container {
    background-color: #16213e;
    border-radius: 15px;
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.header {
    background-color: #0f3460;
    padding: 20px;
    border-radius: 15px 15px 0 0;
    text-align: center;
    margin-bottom: 20px;
}
.header h1 {
    color: #e94560;
    font-size: 2.5em;
    margin-bottom: 10px;
}
.header p {
    color: #a0a0a0;
}
.header img {
    max-width: 300px;
    border-radius: 10px;
    margin: 15px auto;
    display: block;
}
.input-group, .output-group {
    background-color: #1a1a2e;
    padding: 20px;
    border-radius: 10px;
    margin-bottom: 20px;
}
.input-group label, .output-group label {
    color: #e94560;
    font-weight: bold;
}
.generate-btn {
    background-color: #e94560 !important;
    color: white !important;
    border: none !important;
    border-radius: 5px !important;
    padding: 10px 20px !important;
    font-size: 16px !important;
    cursor: pointer !important;
    transition: background-color 0.3s ease !important;
}
.generate-btn:hover {
    background-color: #c81e45 !important;
}
.example-prompts {
    background-color: #1f2b47;
    padding: 15px;
    border-radius: 10px;
    margin-bottom: 20px;
}
.example-prompts h3 {
    color: #e94560;
    margin-bottom: 10px;
}
.example-prompts ul {
    list-style-type: none;
    padding-left: 0;
}
.example-prompts li {
    margin-bottom: 5px;
    cursor: pointer;
    transition: color 0.3s ease;
}
.example-prompts li:hover {
    color: #e94560;
}
"""

# Example prompts
example_prompts = [
    "What is the code for Coronary microvascular disease ?",
    "What is the ICD 11 code for Diseases of coronary artery, unspecified ?",
    "The code is BA85.0. What does it mean?",
]

# Gradio interface
# Gradio interface
with gr.Blocks(css=css) as iface:
    gr.HTML(
        """
        <div class="header">
            <h1>manjunathshiva/ICD11-Clinical-Terminology-16bit</h1>
            <p>Generate ICD 11 code using the fintetuned Llama3.1 8B model : manjunathshiva/ICD11-Clinical-Terminology-16bit model. Enter a prompt and let the AI create!</p>
            <img src="https://cdn-uploads.huggingface.co/production/uploads/64c75c1237333ccfef30a602/tmOlbERGKP7JSODa6T06J.jpeg" alt="Llama">
        </div>
        """
    )

    with gr.Group():
        with gr.Group(elem_classes="example-prompts"):
            gr.HTML("<h3>Example Prompts:</h3>")
            example_buttons = [gr.Button(prompt) for prompt in example_prompts]

        with gr.Group(elem_classes="input-group"):
            prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...", lines=5)
            max_length = gr.Slider(minimum=1, maximum=500, value=128, step=1, label="Max Length")
            temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature")
            generate_btn = gr.Button("Generate", elem_classes="generate-btn")

        with gr.Group(elem_classes="output-group"):
            output = gr.Textbox(label="Generated Text", lines=10)

    generate_btn.click(generate_text, inputs=[prompt, max_length, temperature], outputs=output)

    # Set up example prompt buttons
    for button in example_buttons:
        button.click(lambda x: x, inputs=[button], outputs=[prompt])

# Launch the app
iface.launch()