File size: 4,570 Bytes
c4cf758
 
 
 
 
 
a32c351
873bd97
c4cf758
 
 
 
1867a74
 
 
 
3154606
1867a74
a32c351
 
 
c4cf758
1867a74
a32c351
 
c4cf758
1867a74
a32c351
 
 
f69d4dd
a32c351
 
 
f69d4dd
a32c351
 
 
873bd97
 
a32c351
1867a74
f69d4dd
 
1867a74
 
f69d4dd
 
a32c351
 
 
 
 
f69d4dd
a32c351
c4cf758
1867a74
f69d4dd
 
c4cf758
f69d4dd
 
c4cf758
f69d4dd
 
a32c351
 
f69d4dd
 
 
 
a32c351
f69d4dd
 
 
 
 
 
 
 
 
 
 
c4cf758
 
 
 
 
f69d4dd
 
 
c4cf758
 
 
 
f69d4dd
a32c351
 
 
f69d4dd
 
a32c351
 
 
f69d4dd
 
 
1867a74
a32c351
c4cf758
f69d4dd
c4cf758
1867a74
f69d4dd
c4cf758
f69d4dd
c4cf758
f69d4dd
 
 
 
c4cf758
1867a74
c4cf758
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import gradio as gr
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import tensorflow as tf
import joblib
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.preprocessing import MinMaxScaler

# Load the dataset
webtraffic_data = pd.read_csv("webtraffic.csv")

# Convert 'Hour Index' to datetime
start_date = pd.Timestamp("2024-01-01 00:00:00")
webtraffic_data['Datetime'] = start_date + pd.to_timedelta(webtraffic_data['Hour Index'], unit='h')
webtraffic_data.drop(columns=['Hour Index'], inplace=True)

# Split the data into train/test
train_size = int(len(webtraffic_data) * 0.8)
train_data = webtraffic_data.iloc[:train_size]
test_data = webtraffic_data.iloc[train_size:]

# Load pre-trained models
sarima_model = joblib.load("sarima_model.pkl")  # SARIMA model
lstm_model = tf.keras.models.load_model("lstm_model.keras")  # LSTM model

# Initialize scalers and scale the data for LSTM
scaler_X = MinMaxScaler(feature_range=(0, 1))
scaler_y = MinMaxScaler(feature_range=(0, 1))

# Scale training data
X_train_scaled = scaler_X.fit_transform(train_data['Sessions'].values.reshape(-1, 1))
y_train_scaled = scaler_y.fit_transform(train_data['Sessions'].values.reshape(-1, 1))

# Scale test data
X_test_scaled = scaler_X.transform(test_data['Sessions'].values.reshape(-1, 1))
y_test_scaled = scaler_y.transform(test_data['Sessions'].values.reshape(-1, 1))

# Reshape test data for LSTM (samples, time_steps, features)
X_test_lstm = X_test_scaled.reshape((X_test_scaled.shape[0], 1, 1))

# Generate predictions for SARIMA
future_periods = len(test_data)
sarima_predictions = sarima_model.predict(n_periods=future_periods)

# Generate predictions for LSTM
lstm_predictions_scaled = lstm_model.predict(X_test_lstm[:future_periods])
lstm_predictions = scaler_y.inverse_transform(lstm_predictions_scaled)

# Combine predictions into a DataFrame for visualization
future_predictions = pd.DataFrame({
    "Datetime": test_data['Datetime'],
    "SARIMA_Predicted": sarima_predictions,
    "LSTM_Predicted": lstm_predictions.flatten()
})

# Calculate metrics
mae_sarima_future = mean_absolute_error(test_data['Sessions'], sarima_predictions)
rmse_sarima_future = mean_squared_error(test_data['Sessions'], sarima_predictions, squared=False)

mae_lstm_future = mean_absolute_error(test_data['Sessions'], lstm_predictions)
rmse_lstm_future = mean_squared_error(test_data['Sessions'], lstm_predictions, squared=False)

# Function to plot actual vs. predicted traffic
def plot_predictions():
    plt.figure(figsize=(15, 6))

    # Plot actual traffic
    plt.plot(webtraffic_data['Datetime'].iloc[-future_periods:],
             test_data['Sessions'].values[-future_periods:],
             label='Actual Traffic', color='black', linestyle='dotted', linewidth=2)

    # Plot SARIMA predictions
    plt.plot(future_predictions['Datetime'],
             future_predictions['SARIMA_Predicted'],
             label='SARIMA Predicted', color='blue', linewidth=2)

    # Plot LSTM predictions
    plt.plot(future_predictions['Datetime'],
             future_predictions['LSTM_Predicted'],
             label='LSTM Predicted', color='green', linewidth=2)

    plt.title("Future Traffic Predictions: SARIMA vs LSTM", fontsize=16)
    plt.xlabel("Datetime", fontsize=12)
    plt.ylabel("Sessions", fontsize=12)
    plt.legend(loc="upper left")
    plt.grid(True)
    plt.tight_layout()

    # Save the plot to a file
    plot_path = "/content/predictions_plot.png"
    plt.savefig(plot_path)
    plt.close()
    return plot_path

# Function to display prediction metrics
def display_metrics():
    metrics = {
        "Model": ["SARIMA", "LSTM"],
        "Mean Absolute Error (MAE)": [mae_sarima_future, mae_lstm_future],
        "Root Mean Squared Error (RMSE)": [rmse_sarima_future, rmse_lstm_future]
    }
    return pd.DataFrame(metrics)

# Gradio function to display the dashboard
def gradio_dashboard():
    plot_path = plot_predictions()
    metrics_df = display_metrics()
    return plot_path, metrics_df.to_string()

# Gradio interface
with gr.Blocks() as dashboard:
    gr.Markdown("## Web Traffic Prediction Dashboard")
    gr.Markdown("This dashboard compares predictions from SARIMA and LSTM models.")

    # Show the plot
    plot_output = gr.Image(label="Prediction Plot")
    metrics_output = gr.Textbox(label="Prediction Metrics", lines=15)

    # Define the Gradio button and actions
    gr.Button("Update Dashboard").click(gradio_dashboard, outputs=[plot_output, metrics_output])

# Launch the dashboard
dashboard.launch()