import gradio as gr from transformers import PegasusTokenizer, PegasusForConditionalGeneration # Load Pegasus model and tokenizer model_name = "google/pegasus-xsum" tokenizer = PegasusTokenizer.from_pretrained(model_name) model = PegasusForConditionalGeneration.from_pretrained(model_name) # Function to summarize text def summarize_text(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=1024) summary_ids = model.generate(inputs.input_ids, max_length=128, min_length=30, length_penalty=2.0, num_beams=5) summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) return summary # Gradio interface iface = gr.Interface(fn=summarize_text, inputs=gr.Textbox(label="Enter text to summarize"), outputs=gr.Textbox(label="Summary"), title="Pegasus Text Summarizer", description="This AI agent summarizes long text using the Pegasus model.") # Launch the app iface.launch()