summerizer / app.py
manasagangotri's picture
Create app.py
379e449 verified
raw
history blame
1.01 kB
import gradio as gr
from transformers import PegasusTokenizer, PegasusForConditionalGeneration
# Load Pegasus model and tokenizer
model_name = "google/pegasus-xsum"
tokenizer = PegasusTokenizer.from_pretrained(model_name)
model = PegasusForConditionalGeneration.from_pretrained(model_name)
# Function to summarize text
def summarize_text(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=1024)
summary_ids = model.generate(inputs.input_ids, max_length=128, min_length=30, length_penalty=2.0, num_beams=5)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
return summary
# Gradio interface
iface = gr.Interface(fn=summarize_text,
inputs=gr.Textbox(label="Enter text to summarize"),
outputs=gr.Textbox(label="Summary"),
title="Pegasus Text Summarizer",
description="This AI agent summarizes long text using the Pegasus model.")
# Launch the app
iface.launch()