import streamlit as st import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification import requests import json from googletrans import Translator st.set_page_config(page_title="News Prediction", page_icon=":earth_africa:") # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained("hamzab/roberta-fake-news-classification") model = AutoModelForSequenceClassification.from_pretrained("hamzab/roberta-fake-news-classification") translator = Translator() def translate_to_english(text): try: translated = translator.translate(text, dest='en') return translated.text except Exception as e: return f"Error in translation: {e}" def predict_fake(title, text): input_str = "" + title + "<content>" + text + "<end>" input_ids = tokenizer.encode_plus(input_str, max_length=512, padding="max_length", truncation=True, return_tensors="pt") device = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(device) with torch.no_grad(): output = model(input_ids["input_ids"].to(device), attention_mask=input_ids["attention_mask"].to(device)) return dict(zip(["Fake", "Real"], [x.item() for x in list(torch.nn.Softmax()(output.logits)[0])])) def fact_check_with_google(api_key, query): url = f"https://factchecktools.googleapis.com/v1alpha1/claims:search" params = { "query": query, "key": api_key } response = requests.get(url, params=params) if response.status_code == 200: return response.json() else: return {"error": f"Unable to fetch results from Google Fact Check API. HTTP {response.status_code}: {response.text}"} def main(): st.title("Fake News Prediction") # Load Google API key from a secure location or environment variable try: google_api_key = "AIzaSyAf5v5380xkpo0Rk3kBiSxpxYVBQwcDi2A" except KeyError: st.error("Google Fact Check API key is missing. Please add it to secrets.") return # Create the form for user input with st.form("news_form"): st.subheader("Enter News Details") title = st.text_input("Title") text = st.text_area("Text") language = st.selectbox("Select Language", options=["English", "Other"]) submit_button = st.form_submit_button("Submit") # Process form submission and make prediction if submit_button: if language == "Other": title = translate_to_english(title) text = translate_to_english(text) prediction = predict_fake(title, text) st.subheader("Prediction:") st.write("Prediction: ", prediction) if prediction.get("Real") > 0.5: st.write("This news is predicted to be **real** :muscle:") else: st.write("This news is predicted to be **fake** :shit:") # Fact-check the news using Google Fact Check API st.subheader("Fact-Checking Results:") query = title if title else text[:100] # Use title or first 100 chars of text as query fact_check_results = fact_check_with_google(google_api_key, query) if "error" in fact_check_results: st.error(fact_check_results["error"]) else: claims = fact_check_results.get("claims", []) if claims: for claim in claims: st.write(f"**Claim:** {claim.get('text', 'N/A')}") claim_review = claim.get("claimReview", []) if claim_review: for review in claim_review: st.write(f"- **Publisher:** {review.get('publisher', {}).get('name', 'N/A')}") st.write(f" **Rating:** {review.get('textualRating', 'N/A')}") st.write(f" **URL:** [More Info]({review.get('url', '#')})") else: st.write("No fact-checking information found for this query.") if __name__ == "__main__": main()