Spaces:
Runtime error
Runtime error
File size: 41,959 Bytes
db5855f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "cacbe6b4",
"metadata": {
"id": "rQc-wXjqrEuR"
},
"source": [
"# Quantize NLP models with Post-Training Quantization βin NNCF\n",
"This tutorial demonstrates how to apply `INT8` quantization to the Natural Language Processing model known as [BERT](https://en.wikipedia.org/wiki/BERT_(language_model)), using the [Post-Training Quantization API](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/quantizing-models-post-training/basic-quantization-flow.html) (NNCF library). A fine-tuned [HuggingFace BERT](https://huggingface.co/transformers/model_doc/bert.html) [PyTorch](https://pytorch.org/) model, trained on the [Microsoft Research Paraphrase Corpus (MRPC)](https://www.microsoft.com/en-us/download/details.aspx?id=52398), will be used. The tutorial is designed to be extendable to custom models and datasets. It consists of the following steps:\n",
"\n",
"- Download and prepare the BERT model and MRPC dataset.\n",
"- Define data loading and accuracy validation functionality.\n",
"- Prepare the model for quantization.\n",
"- Run optimization pipeline.\n",
"- Load and test quantized model.\n",
"- Compare the performance of the original, converted and quantized models.\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "d89f8a6b",
"metadata": {},
"source": [
"\n",
"#### Table of contents:\n",
"\n",
"- [Imports](#Imports)\n",
"- [Settings](#Settings)\n",
"- [Prepare the Model](#Prepare-the-Model)\n",
"- [Prepare the Dataset](#Prepare-the-Dataset)\n",
"- [Optimize model using NNCF Post-training Quantization API](#Optimize-model-using-NNCF-Post-training-Quantization-API)\n",
"- [Load and Test OpenVINO Model](#Load-and-Test-OpenVINO-Model)\n",
" - [Select inference device](#Select-inference-device)\n",
"- [Compare F1-score of FP32 and INT8 models](#Compare-F1-score-of-FP32-and-INT8-models)\n",
"- [Compare Performance of the Original, Converted and Quantized Models](#Compare-Performance-of-the-Original,-Converted-and-Quantized-Models)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "694d9fc1-501c-4b86-a747-637e2aad64ba",
"metadata": {},
"outputs": [],
"source": [
"%pip install -q \"nncf>=2.5.0\"\n",
"%pip install -q torch transformers \"torch>=2.1\" datasets evaluate tqdm --extra-index-url https://download.pytorch.org/whl/cpu\n",
"%pip install -q \"openvino>=2023.1.0\""
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "4d6b41e6-132b-40da-b3b9-91bacba29e31",
"metadata": {},
"source": [
"## Imports\n",
"[back to top β¬οΈ](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "771388d6",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-07-10 09:01:29.708173: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
"2023-07-10 09:01:29.872021: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
"To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
"2023-07-10 09:01:30.707194: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:nncf:NNCF initialized successfully. Supported frameworks detected: torch, tensorflow, onnx, openvino\n"
]
}
],
"source": [
"import os\n",
"import time\n",
"from pathlib import Path\n",
"from zipfile import ZipFile\n",
"from typing import Iterable\n",
"from typing import Any\n",
"\n",
"import datasets\n",
"import evaluate\n",
"import numpy as np\n",
"import nncf\n",
"from nncf.parameters import ModelType\n",
"import openvino as ov\n",
"import torch\n",
"from transformers import BertForSequenceClassification, BertTokenizer\n",
"\n",
"# Fetch `notebook_utils` module\n",
"import requests\n",
"\n",
"r = requests.get(\n",
" url=\"https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py\",\n",
")\n",
"\n",
"open(\"notebook_utils.py\", \"w\").write(r.text)\n",
"from notebook_utils import download_file"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "e9e66896-d439-4065-868a-65b44d31525a",
"metadata": {},
"source": [
"## Settings\n",
"[back to top β¬οΈ](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "284e9a4b",
"metadata": {},
"outputs": [],
"source": [
"# Set the data and model directories, source URL and the filename of the model.\n",
"DATA_DIR = \"data\"\n",
"MODEL_DIR = \"model\"\n",
"MODEL_LINK = \"https://download.pytorch.org/tutorial/MRPC.zip\"\n",
"FILE_NAME = MODEL_LINK.split(\"/\")[-1]\n",
"PRETRAINED_MODEL_DIR = os.path.join(MODEL_DIR, \"MRPC\")\n",
"\n",
"os.makedirs(DATA_DIR, exist_ok=True)\n",
"os.makedirs(MODEL_DIR, exist_ok=True)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "44dc335d",
"metadata": {
"id": "YytHDzLE0uOJ",
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## Prepare the Model\n",
"[back to top β¬οΈ](#Table-of-contents:)\n",
"\n",
"Perform the following:\n",
"\n",
"- Download and unpack pre-trained BERT model for MRPC by PyTorch.\n",
"- Convert the model to the OpenVINO Intermediate Representation (OpenVINO IR)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "be9fc64c",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7436f7d07d434a4db799d27084446df9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"model/MRPC.zip: 0%| | 0.00/387M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"IOPub message rate exceeded.\n",
"The Jupyter server will temporarily stop sending output\n",
"to the client in order to avoid crashing it.\n",
"To change this limit, set the config variable\n",
"`--ServerApp.iopub_msg_rate_limit`.\n",
"\n",
"Current values:\n",
"ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec)\n",
"ServerApp.rate_limit_window=3.0 (secs)\n",
"\n",
"IOPub message rate exceeded.\n",
"The Jupyter server will temporarily stop sending output\n",
"to the client in order to avoid crashing it.\n",
"To change this limit, set the config variable\n",
"`--ServerApp.iopub_msg_rate_limit`.\n",
"\n",
"Current values:\n",
"ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec)\n",
"ServerApp.rate_limit_window=3.0 (secs)\n",
"\n",
"IOPub message rate exceeded.\n",
"The Jupyter server will temporarily stop sending output\n",
"to the client in order to avoid crashing it.\n",
"To change this limit, set the config variable\n",
"`--ServerApp.iopub_msg_rate_limit`.\n",
"\n",
"Current values:\n",
"ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec)\n",
"ServerApp.rate_limit_window=3.0 (secs)\n",
"\n",
"IOPub message rate exceeded.\n",
"The Jupyter server will temporarily stop sending output\n",
"to the client in order to avoid crashing it.\n",
"To change this limit, set the config variable\n",
"`--ServerApp.iopub_msg_rate_limit`.\n",
"\n",
"Current values:\n",
"ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec)\n",
"ServerApp.rate_limit_window=3.0 (secs)\n",
"\n",
"IOPub message rate exceeded.\n",
"The Jupyter server will temporarily stop sending output\n",
"to the client in order to avoid crashing it.\n",
"To change this limit, set the config variable\n",
"`--ServerApp.iopub_msg_rate_limit`.\n",
"\n",
"Current values:\n",
"ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec)\n",
"ServerApp.rate_limit_window=3.0 (secs)\n",
"\n"
]
}
],
"source": [
"download_file(MODEL_LINK, directory=MODEL_DIR, show_progress=True)\n",
"with ZipFile(f\"{MODEL_DIR}/{FILE_NAME}\", \"r\") as zip_ref:\n",
" zip_ref.extractall(MODEL_DIR)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "5dca2fa0",
"metadata": {
"id": "ehX7F6KB0uPu"
},
"source": [
"Convert the original PyTorch model to the OpenVINO Intermediate Representation.\n",
"\n",
"From OpenVINO 2023.0, we can directly convert a model from the PyTorch format to the OpenVINO IR format using model conversion API. Following PyTorch model formats are supported:\n",
"\n",
"- `torch.nn.Module`\n",
"- `torch.jit.ScriptModule`\n",
"- `torch.jit.ScriptFunction`"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "eb2f6d66",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/ea/work/notebooks_convert/notebooks_conv_env/lib/python3.8/site-packages/torch/jit/annotations.py:309: UserWarning: TorchScript will treat type annotations of Tensor dtype-specific subtypes as if they are normal Tensors. dtype constraints are not enforced in compilation either.\n",
" warnings.warn(\"TorchScript will treat type annotations of Tensor \"\n"
]
}
],
"source": [
"MAX_SEQ_LENGTH = 128\n",
"input_shape = ov.PartialShape([1, -1])\n",
"ir_model_xml = Path(MODEL_DIR) / \"bert_mrpc.xml\"\n",
"core = ov.Core()\n",
"\n",
"torch_model = BertForSequenceClassification.from_pretrained(PRETRAINED_MODEL_DIR)\n",
"torch_model.eval\n",
"\n",
"input_info = [\n",
" (\"input_ids\", input_shape, np.int64),\n",
" (\"attention_mask\", input_shape, np.int64),\n",
" (\"token_type_ids\", input_shape, np.int64),\n",
"]\n",
"default_input = torch.ones(1, MAX_SEQ_LENGTH, dtype=torch.int64)\n",
"inputs = {\n",
" \"input_ids\": default_input,\n",
" \"attention_mask\": default_input,\n",
" \"token_type_ids\": default_input,\n",
"}\n",
"\n",
"# Convert the PyTorch model to OpenVINO IR FP32.\n",
"if not ir_model_xml.exists():\n",
" model = ov.convert_model(torch_model, example_input=inputs, input=input_info)\n",
" ov.save_model(model, str(ir_model_xml))\n",
"else:\n",
" model = core.read_model(ir_model_xml)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "17f79b5f",
"metadata": {},
"source": [
"## Prepare the Dataset\n",
"[back to top β¬οΈ](#Table-of-contents:)\n",
"\n",
"We download the [General Language Understanding Evaluation (GLUE)](https://gluebenchmark.com/) dataset for the MRPC task from HuggingFace datasets.\n",
"Then, we tokenize the data with a pre-trained BERT tokenizer from HuggingFace."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "632fb1fc",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Found cached dataset glue (/home/ea/.cache/huggingface/datasets/glue/mrpc/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad)\n",
"Loading cached processed dataset at /home/ea/.cache/huggingface/datasets/glue/mrpc/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad/cache-b5f4c739eb2a4a9f.arrow\n"
]
}
],
"source": [
"def create_data_source():\n",
" raw_dataset = datasets.load_dataset(\"glue\", \"mrpc\", split=\"validation\")\n",
" tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_DIR)\n",
"\n",
" def _preprocess_fn(examples):\n",
" texts = (examples[\"sentence1\"], examples[\"sentence2\"])\n",
" result = tokenizer(*texts, padding=\"max_length\", max_length=MAX_SEQ_LENGTH, truncation=True)\n",
" result[\"labels\"] = examples[\"label\"]\n",
" return result\n",
"\n",
" processed_dataset = raw_dataset.map(_preprocess_fn, batched=True, batch_size=1)\n",
"\n",
" return processed_dataset\n",
"\n",
"\n",
"data_source = create_data_source()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "e082b01d",
"metadata": {},
"source": [
"## Optimize model using NNCF Post-training Quantization API\n",
"[back to top β¬οΈ](#Table-of-contents:)\n",
"\n",
"[NNCF](https://github.com/openvinotoolkit/nncf) provides a suite of advanced algorithms for Neural Networks inference optimization in OpenVINO with minimal accuracy drop.\n",
"We will use 8-bit quantization in post-training mode (without the fine-tuning pipeline) to optimize BERT.\n",
"\n",
"The optimization process contains the following steps:\n",
"\n",
"1. Create a Dataset for quantization\n",
"2. Run `nncf.quantize` for getting an optimized model\n",
"3. Serialize OpenVINO IR model using `openvino.save_model` function"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "e089ea99",
"metadata": {
"test_replace": {
"quantized_model = nncf.quantize(model, calibration_dataset, model_type=ModelType.TRANSFORMER)": "quantized_model = nncf.quantize(model, calibration_dataset, model_type=ModelType.TRANSFORMER, subset_size=10)"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:nncf:202 ignored nodes was found by types in the NNCFGraph\n",
"INFO:nncf:24 ignored nodes was found by name in the NNCFGraph\n",
"INFO:nncf:Not adding activation input quantizer for operation: 22 aten::rsub_16\n",
"INFO:nncf:Not adding activation input quantizer for operation: 25 aten::rsub_17\n",
"INFO:nncf:Not adding activation input quantizer for operation: 30 aten::mul_18\n",
"INFO:nncf:Not adding activation input quantizer for operation: 11 aten::add_40\n",
"INFO:nncf:Not adding activation input quantizer for operation: 14 aten::add__46\n",
"INFO:nncf:Not adding activation input quantizer for operation: 17 aten::layer_norm_48\n",
"20 aten::layer_norm_49\n",
"23 aten::layer_norm_50\n",
"\n",
"INFO:nncf:Not adding activation input quantizer for operation: 36 aten::add_108\n",
"INFO:nncf:Not adding activation input quantizer for operation: 55 aten::softmax_109\n",
"INFO:nncf:Not adding activation input quantizer for operation: 74 aten::matmul_110\n",
"INFO:nncf:Not adding activation input quantizer for operation: 26 aten::add_126\n",
"INFO:nncf:Not adding activation input quantizer for operation: 31 aten::layer_norm_128\n",
"47 aten::layer_norm_129\n",
"66 aten::layer_norm_130\n",
"\n",
"INFO:nncf:Not adding activation input quantizer for operation: 85 aten::add_140\n",
"INFO:nncf:Not adding activation input quantizer for operation: 103 aten::layer_norm_142\n",
"133 aten::layer_norm_143\n",
"171 aten::layer_norm_144\n",
"\n",
"INFO:nncf:Not adding activation input quantizer for operation: 38 aten::add_202\n",
"INFO:nncf:Not adding activation input quantizer for operation: 57 aten::softmax_203\n",
"INFO:nncf:Not adding activation input quantizer for operation: 76 aten::matmul_204\n",
"INFO:nncf:Not adding activation input quantizer for operation: 209 aten::add_220\n",
"INFO:nncf:Not adding activation input quantizer for operation: 236 aten::layer_norm_222\n",
"250 aten::layer_norm_223\n",
"267 aten::layer_norm_224\n",
"\n",
"INFO:nncf:Not adding activation input quantizer for operation: 287 aten::add_234\n",
"INFO:nncf:Not adding activation input quantizer for operation: 316 aten::layer_norm_236\n",
"342 aten::layer_norm_237\n",
"364 aten::layer_norm_238\n",
"\n",
"INFO:nncf:Not adding activation input quantizer for operation: 39 aten::add_296\n",
"INFO:nncf:Not adding activation input quantizer for operation: 58 aten::softmax_297\n",
"INFO:nncf:Not adding activation input quantizer for operation: 77 aten::matmul_298\n",
"INFO:nncf:Not adding activation input quantizer for operation: 221 aten::add_314\n",
"INFO:nncf:Not adding activation input quantizer for operation: 242 aten::layer_norm_316\n",
"259 aten::layer_norm_317\n",
"279 aten::layer_norm_318\n",
"\n",
"INFO:nncf:Not adding activation input quantizer for operation: 300 aten::add_328\n",
"INFO:nncf:Not adding activation input quantizer for operation: 326 aten::layer_norm_330\n",
"348 aten::layer_norm_331\n",
"370 aten::layer_norm_332\n",
"\n",
"INFO:nncf:Not adding activation input quantizer for operation: 40 aten::add_390\n",
"INFO:nncf:Not adding activation input quantizer for operation: 59 aten::softmax_391\n",
"INFO:nncf:Not adding activation input quantizer for operation: 78 aten::matmul_392\n",
"INFO:nncf:Not adding activation input quantizer for operation: 223 aten::add_408\n",
"INFO:nncf:Not adding activation input quantizer for operation: 243 aten::layer_norm_410\n",
"260 aten::layer_norm_411\n",
"280 aten::layer_norm_412\n",
"\n",
"INFO:nncf:Not adding activation input quantizer for operation: 302 aten::add_422\n",
"INFO:nncf:Not adding activation input quantizer for operation: 328 aten::layer_norm_424\n",
"350 aten::layer_norm_425\n",
"372 aten::layer_norm_426\n",
"\n",
"INFO:nncf:Not adding activation input quantizer for operation: 41 aten::add_484\n",
"INFO:nncf:Not adding activation input quantizer for operation: 60 aten::softmax_485\n",
"INFO:nncf:Not adding activation input quantizer for operation: 79 aten::matmul_486\n",
"INFO:nncf:Not adding activation input quantizer for operation: 225 aten::add_502\n",
"INFO:nncf:Not adding activation input quantizer for operation: 244 aten::layer_norm_504\n",
"261 aten::layer_norm_505\n",
"281 aten::layer_norm_506\n",
"\n",
"INFO:nncf:Not adding activation input quantizer for operation: 304 aten::add_516\n",
"INFO:nncf:Not adding activation input quantizer for operation: 330 aten::layer_norm_518\n",
"352 aten::layer_norm_519\n",
"374 aten::layer_norm_520\n",
"\n",
"INFO:nncf:Not adding activation input quantizer for operation: 42 aten::add_578\n",
"INFO:nncf:Not adding activation input quantizer for operation: 61 aten::softmax_579\n",
"INFO:nncf:Not adding activation input quantizer for operation: 80 aten::matmul_580\n",
"INFO:nncf:Not adding activation input quantizer for operation: 227 aten::add_596\n",
"INFO:nncf:Not adding activation input quantizer for operation: 245 aten::layer_norm_598\n",
"262 aten::layer_norm_599\n",
"282 aten::layer_norm_600\n",
"\n",
"INFO:nncf:Not adding activation input quantizer for operation: 306 aten::add_610\n",
"INFO:nncf:Not adding activation input quantizer for operation: 332 aten::layer_norm_612\n",
"354 aten::layer_norm_613\n",
"376 aten::layer_norm_614\n",
"\n",
"INFO:nncf:Not adding activation input quantizer for operation: 43 aten::add_672\n",
"INFO:nncf:Not adding activation input quantizer for operation: 62 aten::softmax_673\n",
"INFO:nncf:Not adding activation input quantizer for operation: 81 aten::matmul_674\n",
"INFO:nncf:Not adding activation input quantizer for operation: 229 aten::add_690\n",
"INFO:nncf:Not adding activation input quantizer for operation: 246 aten::layer_norm_692\n",
"263 aten::layer_norm_693\n",
"283 aten::layer_norm_694\n",
"\n",
"INFO:nncf:Not adding activation input quantizer for operation: 308 aten::add_704\n",
"INFO:nncf:Not adding activation input quantizer for operation: 334 aten::layer_norm_706\n",
"356 aten::layer_norm_707\n",
"378 aten::layer_norm_708\n",
"\n",
"INFO:nncf:Not adding activation input quantizer for operation: 44 aten::add_766\n",
"INFO:nncf:Not adding activation input quantizer for operation: 63 aten::softmax_767\n",
"INFO:nncf:Not adding activation input quantizer for operation: 82 aten::matmul_768\n",
"INFO:nncf:Not adding activation input quantizer for operation: 231 aten::add_784\n",
"INFO:nncf:Not adding activation input quantizer for operation: 247 aten::layer_norm_786\n",
"264 aten::layer_norm_787\n",
"284 aten::layer_norm_788\n",
"\n",
"INFO:nncf:Not adding activation input quantizer for operation: 310 aten::add_798\n",
"INFO:nncf:Not adding activation input quantizer for operation: 336 aten::layer_norm_800\n",
"358 aten::layer_norm_801\n",
"380 aten::layer_norm_802\n",
"\n",
"INFO:nncf:Not adding activation input quantizer for operation: 45 aten::add_860\n",
"INFO:nncf:Not adding activation input quantizer for operation: 64 aten::softmax_861\n",
"INFO:nncf:Not adding activation input quantizer for operation: 83 aten::matmul_862\n",
"INFO:nncf:Not adding activation input quantizer for operation: 233 aten::add_878\n",
"INFO:nncf:Not adding activation input quantizer for operation: 248 aten::layer_norm_880\n",
"265 aten::layer_norm_881\n",
"285 aten::layer_norm_882\n",
"\n",
"INFO:nncf:Not adding activation input quantizer for operation: 312 aten::add_892\n",
"INFO:nncf:Not adding activation input quantizer for operation: 338 aten::layer_norm_894\n",
"360 aten::layer_norm_895\n",
"382 aten::layer_norm_896\n",
"\n",
"INFO:nncf:Not adding activation input quantizer for operation: 46 aten::add_954\n",
"INFO:nncf:Not adding activation input quantizer for operation: 65 aten::softmax_955\n",
"INFO:nncf:Not adding activation input quantizer for operation: 84 aten::matmul_956\n",
"INFO:nncf:Not adding activation input quantizer for operation: 235 aten::add_972\n",
"INFO:nncf:Not adding activation input quantizer for operation: 249 aten::layer_norm_974\n",
"266 aten::layer_norm_975\n",
"286 aten::layer_norm_976\n",
"\n",
"INFO:nncf:Not adding activation input quantizer for operation: 314 aten::add_986\n",
"INFO:nncf:Not adding activation input quantizer for operation: 340 aten::layer_norm_988\n",
"362 aten::layer_norm_989\n",
"384 aten::layer_norm_990\n",
"\n",
"INFO:nncf:Not adding activation input quantizer for operation: 35 aten::add_1048\n",
"INFO:nncf:Not adding activation input quantizer for operation: 54 aten::softmax_1049\n",
"INFO:nncf:Not adding activation input quantizer for operation: 73 aten::matmul_1050\n",
"INFO:nncf:Not adding activation input quantizer for operation: 215 aten::add_1066\n",
"INFO:nncf:Not adding activation input quantizer for operation: 240 aten::layer_norm_1068\n",
"257 aten::layer_norm_1069\n",
"277 aten::layer_norm_1070\n",
"\n",
"INFO:nncf:Not adding activation input quantizer for operation: 296 aten::add_1080\n",
"INFO:nncf:Not adding activation input quantizer for operation: 322 aten::layer_norm_1082\n",
"344 aten::layer_norm_1083\n",
"366 aten::layer_norm_1084\n",
"\n",
"INFO:nncf:Not adding activation input quantizer for operation: 37 aten::add_1142\n",
"INFO:nncf:Not adding activation input quantizer for operation: 56 aten::softmax_1143\n",
"INFO:nncf:Not adding activation input quantizer for operation: 75 aten::matmul_1144\n",
"INFO:nncf:Not adding activation input quantizer for operation: 218 aten::add_1160\n",
"INFO:nncf:Not adding activation input quantizer for operation: 241 aten::layer_norm_1162\n",
"258 aten::layer_norm_1163\n",
"278 aten::layer_norm_1164\n",
"\n",
"INFO:nncf:Not adding activation input quantizer for operation: 298 aten::add_1174\n",
"INFO:nncf:Not adding activation input quantizer for operation: 324 aten::layer_norm_1176\n",
"346 aten::layer_norm_1177\n",
"368 aten::layer_norm_1178\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Statistics collection: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 300/300 [00:26<00:00, 11.28it/s]\n",
"Biases correction: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 74/74 [00:25<00:00, 2.89it/s]\n"
]
}
],
"source": [
"INPUT_NAMES = [key for key in inputs.keys()]\n",
"\n",
"\n",
"def transform_fn(data_item):\n",
" \"\"\"\n",
" Extract the model's input from the data item.\n",
" The data item here is the data item that is returned from the data source per iteration.\n",
" This function should be passed when the data item cannot be used as model's input.\n",
" \"\"\"\n",
" inputs = {name: np.asarray([data_item[name]], dtype=np.int64) for name in INPUT_NAMES}\n",
" return inputs\n",
"\n",
"\n",
"calibration_dataset = nncf.Dataset(data_source, transform_fn)\n",
"# Quantize the model. By specifying model_type, we specify additional transformer patterns in the model.\n",
"quantized_model = nncf.quantize(model, calibration_dataset, model_type=ModelType.TRANSFORMER)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "da83574c-7abc-40a8-ae30-431c1b2bd823",
"metadata": {},
"outputs": [],
"source": [
"compressed_model_xml = Path(MODEL_DIR) / \"quantized_bert_mrpc.xml\"\n",
"ov.save_model(quantized_model, compressed_model_xml)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "7c30ab44",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## Load and Test OpenVINO Model\n",
"[back to top β¬οΈ](#Table-of-contents:)\n",
"\n",
"To load and test converted model, perform the following:\n",
"\n",
"* Load the model and compile it for selected device.\n",
"* Prepare the input.\n",
"* Run the inference.\n",
"* Get the answer from the model output."
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "93749c47-073f-4ffe-a507-4d38447159f5",
"metadata": {},
"source": [
"### Select inference device\n",
"[back to top β¬οΈ](#Table-of-contents:)\n",
"\n",
"select device from dropdown list for running inference using OpenVINO"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "6436bcf3-e446-4fee-a6ed-58235119a18d",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3cdd9d273ae64886993d433f91a7289a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Dropdown(description='Device:', index=2, options=('CPU', 'GPU', 'AUTO'), value='AUTO')"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import ipywidgets as widgets\n",
"\n",
"device = widgets.Dropdown(\n",
" options=core.available_devices + [\"AUTO\"],\n",
" value=\"AUTO\",\n",
" description=\"Device:\",\n",
" disabled=False,\n",
")\n",
"\n",
"device"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "4d79b1a5",
"metadata": {},
"outputs": [],
"source": [
"# Compile the model for a specific device.\n",
"compiled_quantized_model = core.compile_model(model=quantized_model, device_name=device.value)\n",
"output_layer = compiled_quantized_model.outputs[0]"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "ef1d846e",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"The Data Source returns a pair of sentences (indicated by `sample_idx`) and the inference compares these sentences and outputs whether their meaning is the same. You can test other sentences by changing `sample_idx` to another value (from 0 to 407)."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "e72504b9",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Text 1: Wal-Mart said it would check all of its million-plus domestic workers to ensure they were legally employed .\n",
"Text 2: It has also said it would review all of its domestic employees more than 1 million to ensure they have legal status .\n",
"The same meaning: yes\n"
]
}
],
"source": [
"sample_idx = 5\n",
"sample = data_source[sample_idx]\n",
"inputs = {k: torch.unsqueeze(torch.tensor(sample[k]), 0) for k in [\"input_ids\", \"token_type_ids\", \"attention_mask\"]}\n",
"\n",
"result = compiled_quantized_model(inputs)[output_layer]\n",
"result = np.argmax(result)\n",
"\n",
"print(f\"Text 1: {sample['sentence1']}\")\n",
"print(f\"Text 2: {sample['sentence2']}\")\n",
"print(f\"The same meaning: {'yes' if result == 1 else 'no'}\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "89920c37-dc2f-4177-b25f-bd8b1d0e34d3",
"metadata": {
"tags": []
},
"source": [
"## Compare F1-score of FP32 and INT8 models\n",
"[back to top β¬οΈ](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "aeea7cc8-3eed-4474-8f59-ae63197368d1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Checking the accuracy of the original model:\n",
"F1 score: 0.9019\n",
"Checking the accuracy of the quantized model:\n",
"F1 score: 0.8995\n"
]
}
],
"source": [
"def validate(model: ov.Model, dataset: Iterable[Any]) -> float:\n",
" \"\"\"\n",
" Evaluate the model on GLUE dataset.\n",
" Returns F1 score metric.\n",
" \"\"\"\n",
" compiled_model = core.compile_model(model, device_name=device.value)\n",
" output_layer = compiled_model.output(0)\n",
"\n",
" metric = evaluate.load(\"glue\", \"mrpc\")\n",
" for batch in dataset:\n",
" inputs = [np.expand_dims(np.asarray(batch[key], dtype=np.int64), 0) for key in INPUT_NAMES]\n",
" outputs = compiled_model(inputs)[output_layer]\n",
" predictions = outputs[0].argmax(axis=-1)\n",
" metric.add_batch(predictions=[predictions], references=[batch[\"labels\"]])\n",
" metrics = metric.compute()\n",
" f1_score = metrics[\"f1\"]\n",
"\n",
" return f1_score\n",
"\n",
"\n",
"print(\"Checking the accuracy of the original model:\")\n",
"metric = validate(model, data_source)\n",
"print(f\"F1 score: {metric:.4f}\")\n",
"\n",
"print(\"Checking the accuracy of the quantized model:\")\n",
"metric = validate(quantized_model, data_source)\n",
"print(f\"F1 score: {metric:.4f}\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "4f67f6a2",
"metadata": {
"id": "vQACMfAUo52V",
"tags": []
},
"source": [
"## Compare Performance of the Original, Converted and Quantized Models\n",
"[back to top β¬οΈ](#Table-of-contents:)\n",
"\n",
"Compare the original PyTorch model with OpenVINO converted and quantized models (`FP32`, `INT8`) to see the difference in performance. It is expressed in Sentences Per Second (SPS) measure, which is the same as Frames Per Second (FPS) for images."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "734ae69a",
"metadata": {},
"outputs": [],
"source": [
"# Compile the model for a specific device.\n",
"compiled_model = core.compile_model(model=model, device_name=device.value)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "f484fff2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"PyTorch model on CPU: 0.080 seconds per sentence, SPS: 12.47\n",
"IR FP32 model in OpenVINO Runtime/AUTO: 0.024 seconds per sentence, SPS: 41.92\n",
"OpenVINO IR INT8 model in OpenVINO Runtime/AUTO: 0.012 seconds per sentence, SPS: 84.38\n"
]
}
],
"source": [
"num_samples = 50\n",
"sample = data_source[0]\n",
"inputs = {k: torch.unsqueeze(torch.tensor(sample[k]), 0) for k in [\"input_ids\", \"token_type_ids\", \"attention_mask\"]}\n",
"\n",
"with torch.no_grad():\n",
" start = time.perf_counter()\n",
" for _ in range(num_samples):\n",
" torch_model(torch.vstack(list(inputs.values())))\n",
" end = time.perf_counter()\n",
" time_torch = end - start\n",
"print(f\"PyTorch model on CPU: {time_torch / num_samples:.3f} seconds per sentence, \" f\"SPS: {num_samples / time_torch:.2f}\")\n",
"\n",
"start = time.perf_counter()\n",
"for _ in range(num_samples):\n",
" compiled_model(inputs)\n",
"end = time.perf_counter()\n",
"time_ir = end - start\n",
"print(f\"IR FP32 model in OpenVINO Runtime/{device.value}: {time_ir / num_samples:.3f} \" f\"seconds per sentence, SPS: {num_samples / time_ir:.2f}\")\n",
"\n",
"start = time.perf_counter()\n",
"for _ in range(num_samples):\n",
" compiled_quantized_model(inputs)\n",
"end = time.perf_counter()\n",
"time_ir = end - start\n",
"print(f\"OpenVINO IR INT8 model in OpenVINO Runtime/{device.value}: {time_ir / num_samples:.3f} \" f\"seconds per sentence, SPS: {num_samples / time_ir:.2f}\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "add78af0",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"Finally, measure the inference performance of OpenVINO `FP32` and `INT8` models. For this purpose, use [Benchmark Tool](https://docs.openvino.ai/2024/learn-openvino/openvino-samples/benchmark-tool.html) in OpenVINO.\n",
"\n",
"> **Note**: The `benchmark_app` tool is able to measure the performance of the OpenVINO Intermediate Representation (OpenVINO IR) models only. For more accurate performance, run `benchmark_app` in a terminal/command prompt after closing other applications. Run `benchmark_app -m model.xml -d CPU` to benchmark async inference on CPU for one minute. Change `CPU` to `GPU` to benchmark on GPU. Run `benchmark_app --help` to see an overview of all command-line options."
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "f71b38a8",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[Step 1/11] Parsing and validating input arguments\n",
"[ INFO ] Parsing input parameters\n",
"[Step 2/11] Loading OpenVINO Runtime\n",
"[ WARNING ] Default duration 120 seconds is used for unknown device device.value\n",
"[ INFO ] OpenVINO:\n",
"[ INFO ] Build ................................. 2023.0.0-10926-b4452d56304-releases/2023/0\n",
"[ INFO ] \n",
"[ INFO ] Device info:\n",
"[ ERROR ] Check 'false' failed at src/inference/src/core.cpp:84:\n",
"Device with \"device\" name is not registered in the OpenVINO Runtime\n",
"Traceback (most recent call last):\n",
" File \"/home/ea/work/notebooks_convert/notebooks_conv_env/lib/python3.8/site-packages/openvino/tools/benchmark/main.py\", line 103, in main\n",
" benchmark.print_version_info()\n",
" File \"/home/ea/work/notebooks_convert/notebooks_conv_env/lib/python3.8/site-packages/openvino/tools/benchmark/benchmark.py\", line 48, in print_version_info\n",
" for device, version in self.core.get_versions(self.device).items():\n",
"RuntimeError: Check 'false' failed at src/inference/src/core.cpp:84:\n",
"Device with \"device\" name is not registered in the OpenVINO Runtime\n",
"\n"
]
}
],
"source": [
"# Inference FP32 model (OpenVINO IR)\n",
"!benchmark_app -m $ir_model_xml -shape [1,128],[1,128],[1,128] -d {device.value} -api sync"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "fdf41525",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[Step 1/11] Parsing and validating input arguments\n",
"[ INFO ] Parsing input parameters\n",
"[Step 2/11] Loading OpenVINO Runtime\n",
"[ WARNING ] Default duration 120 seconds is used for unknown device device.value\n",
"[ INFO ] OpenVINO:\n",
"[ INFO ] Build ................................. 2023.0.0-10926-b4452d56304-releases/2023/0\n",
"[ INFO ] \n",
"[ INFO ] Device info:\n",
"[ ERROR ] Check 'false' failed at src/inference/src/core.cpp:84:\n",
"Device with \"device\" name is not registered in the OpenVINO Runtime\n",
"Traceback (most recent call last):\n",
" File \"/home/ea/work/notebooks_convert/notebooks_conv_env/lib/python3.8/site-packages/openvino/tools/benchmark/main.py\", line 103, in main\n",
" benchmark.print_version_info()\n",
" File \"/home/ea/work/notebooks_convert/notebooks_conv_env/lib/python3.8/site-packages/openvino/tools/benchmark/benchmark.py\", line 48, in print_version_info\n",
" for device, version in self.core.get_versions(self.device).items():\n",
"RuntimeError: Check 'false' failed at src/inference/src/core.cpp:84:\n",
"Device with \"device\" name is not registered in the OpenVINO Runtime\n",
"\n"
]
}
],
"source": [
"# Inference INT8 model (OpenVINO IR)\n",
"! benchmark_app -m $compressed_model_xml -shape [1,128],[1,128],[1,128] -d {device.value} -api sync"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
},
"openvino_notebooks": {
"imageUrl": "",
"tags": {
"categories": [
"API Overview",
"Optimize"
],
"libraries": [],
"other": [],
"tasks": [
"Text Classification"
]
}
},
"vscode": {
"interpreter": {
"hash": "cec18e25feb9469b5ff1085a8097bdcd86db6a4ac301d6aeff87d0f3e7ce4ca5"
}
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|