File size: 49,818 Bytes
db5855f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "rQc-wXjqrEuR"
   },
   "source": [
    "# Quantization of Image Classification Models\n",
    "\n",
    "This tutorial demonstrates how to apply `INT8` quantization to Image Classification model using [NNCF](https://github.com/openvinotoolkit/nncf). It uses the MobileNet V2 model, trained on Cifar10 dataset. The code is designed to be extendable to custom models and datasets. The tutorial uses OpenVINO backend for performing model quantization in NNCF, if you interested how to apply quantization on PyTorch model, please check this [tutorial](../pytorch-post-training-quantization-nncf/pytorch-post-training-quantization-nncf.ipynb).\n",
    "\n",
    "This tutorial consists of the following steps:\n",
    "\n",
    "- Prepare the model for quantization.\n",
    "- Define a data loading functionality.\n",
    "- Perform quantization.\n",
    "- Compare accuracy of the original and quantized models.\n",
    "- Compare performance of the original and quantized models.\n",
    "- Compare results on one picture.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "\n",
    "#### Table of contents:\n",
    "\n",
    "- [Prepare the Model](#Prepare-the-Model)\n",
    "- [Prepare Dataset](#Prepare-Dataset)\n",
    "- [Perform Quantization](#Perform-Quantization)\n",
    "    - [Create Dataset for Validation](#Create-Dataset-for-Validation)\n",
    "- [Run nncf.quantize for Getting an Optimized Model](#Run-nncf.quantize-for-Getting-an-Optimized-Model)\n",
    "- [Serialize an OpenVINO IR model](#Serialize-an-OpenVINO-IR-model)\n",
    "- [Compare Accuracy of the Original and Quantized Models](#Compare-Accuracy-of-the-Original-and-Quantized-Models)\n",
    "    - [Select inference device](#Select-inference-device)\n",
    "- [Compare Performance of the Original and Quantized Models](#Compare-Performance-of-the-Original-and-Quantized-Models)\n",
    "- [Compare results on four pictures](#Compare-results-on-four-pictures)\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import platform\n",
    "\n",
    "# Install required packages\n",
    "%pip install -q \"openvino>=2023.1.0\" \"nncf>=2.6.0\" torch torchvision tqdm --extra-index-url https://download.pytorch.org/whl/cpu\n",
    "\n",
    "if platform.system() != \"Windows\":\n",
    "    %pip install -q \"matplotlib>=3.4\"\n",
    "else:\n",
    "    %pip install -q \"matplotlib>=3.4,<3.7\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "from pathlib import Path\n",
    "\n",
    "# Set the data and model directories\n",
    "DATA_DIR = Path(\"data\")\n",
    "MODEL_DIR = Path(\"model\")\n",
    "model_repo = \"pytorch-cifar-models\"\n",
    "\n",
    "DATA_DIR.mkdir(exist_ok=True)\n",
    "MODEL_DIR.mkdir(exist_ok=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "D-frbVLKrkmv"
   },
   "source": [
    "## Prepare the Model\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "Model preparation stage has the following steps:\n",
    "\n",
    "- Download a PyTorch model\n",
    "- Convert model to OpenVINO Intermediate Representation format (IR) using model conversion Python API\n",
    "- Serialize converted model on disk\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "\n",
    "if not Path(model_repo).exists():\n",
    "    !git clone https://github.com/chenyaofo/pytorch-cifar-models.git\n",
    "\n",
    "sys.path.append(model_repo)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "from pytorch_cifar_models import cifar10_mobilenetv2_x1_0\n",
    "\n",
    "model = cifar10_mobilenetv2_x1_0(pretrained=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "OpenVINO supports PyTorch models via conversion to OpenVINO Intermediate Representation format using model conversion Python API. `ov.convert_model` accept PyTorch model instance and convert it into `openvino.runtime.Model` representation of model in OpenVINO. Optionally, you may specify `example_input` which serves as a helper for model tracing and `input_shape` for converting the model with static shape. The converted model is ready to be loaded on a device for inference and can be saved on a disk for next usage via the `save_model` function. More details about model conversion Python API can be found on this [page](https://docs.openvino.ai/2024/openvino-workflow/model-preparation.html)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "id": "f7i6dWUmhloy",
    "tags": []
   },
   "outputs": [],
   "source": [
    "import openvino as ov\n",
    "\n",
    "model.eval()\n",
    "\n",
    "ov_model = ov.convert_model(model, input=[1, 3, 32, 32])\n",
    "\n",
    "ov.save_model(ov_model, MODEL_DIR / \"mobilenet_v2.xml\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "ynLvh8rNc2wv"
   },
   "source": [
    "## Prepare Dataset\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "We will use [CIFAR10](https://www.cs.toronto.edu/~kriz/cifar.html) dataset from [torchvision](https://pytorch.org/vision/stable/generated/torchvision.datasets.CIFAR10.html). Preprocessing for model obtained from training [config](https://github.com/chenyaofo/image-classification-codebase/blob/master/conf/cifar10.conf)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Files already downloaded and verified\n"
     ]
    }
   ],
   "source": [
    "import torch\n",
    "from torchvision import transforms\n",
    "from torchvision.datasets import CIFAR10\n",
    "\n",
    "transform = transforms.Compose(\n",
    "    [\n",
    "        transforms.ToTensor(),\n",
    "        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261)),\n",
    "    ]\n",
    ")\n",
    "dataset = CIFAR10(root=DATA_DIR, train=False, transform=transform, download=True)\n",
    "val_loader = torch.utils.data.DataLoader(\n",
    "    dataset,\n",
    "    batch_size=1,\n",
    "    shuffle=False,\n",
    "    num_workers=0,\n",
    "    pin_memory=True,\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Perform Quantization\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "[NNCF](https://github.com/openvinotoolkit/nncf) provides a suite of advanced algorithms for Neural Networks inference optimization in OpenVINO with minimal accuracy drop.\n",
    "We will use 8-bit quantization in post-training mode (without the fine-tuning pipeline) to optimize MobileNetV2.\n",
    "The optimization process contains the following steps:\n",
    "\n",
    "1. Create a Dataset for quantization.\n",
    "2. Run `nncf.quantize` for getting an optimized model.\n",
    "3. Serialize an OpenVINO IR model, using the `openvino.save_model` function.\n",
    "\n",
    "\n",
    "### Create Dataset for Validation\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "NNCF is compatible with `torch.utils.data.DataLoader` interface.  For performing quantization it should be passed into `nncf.Dataset` object with transformation function, which prepares input data to fit into model during quantization, in our case, to pick input tensor from pair (input tensor and label) and convert PyTorch tensor to numpy. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "id": "DErQofk8tO6c",
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "INFO:nncf:NNCF initialized successfully. Supported frameworks detected: torch, tensorflow, onnx, openvino\n"
     ]
    }
   ],
   "source": [
    "import nncf\n",
    "\n",
    "\n",
    "def transform_fn(data_item):\n",
    "    image_tensor = data_item[0]\n",
    "    return image_tensor.numpy()\n",
    "\n",
    "\n",
    "quantization_dataset = nncf.Dataset(val_loader, transform_fn)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Run nncf.quantize for Getting an Optimized Model\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "`nncf.quantize` function accepts model and prepared quantization dataset for performing basic quantization. Optionally, additional parameters like `subset_size`, `preset`, `ignored_scope` can be provided to improve quantization result if applicable. More details about supported parameters can be found on this [page](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/quantizing-models-post-training/basic-quantization-flow.html#tune-quantization-parameters)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "tags": [],
    "test_replace": {
     "quant_ov_model = nncf.quantize(ov_model, quantization_dataset)": "quant_ov_model = nncf.quantize(ov_model, quantization_dataset, subset_size=10)"
    }
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Statistics collection: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 300/300 [00:06<00:00, 44.58it/s]\n",
      "Biases correction: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 36/36 [00:01<00:00, 24.92it/s]\n"
     ]
    }
   ],
   "source": [
    "quant_ov_model = nncf.quantize(ov_model, quantization_dataset)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##  Serialize an OpenVINO IR model\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "Similar to `ov.convert_model`, quantized model is `ov.Model` object which ready to be loaded into device and can be serialized on disk using `ov.save_model`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "ov.save_model(quant_ov_model, MODEL_DIR / \"quantized_mobilenet_v2.xml\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Compare Accuracy of the Original and Quantized Models\n",
    "[back to top ⬆️](#Table-of-contents:)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "from tqdm.notebook import tqdm\n",
    "import numpy as np\n",
    "\n",
    "\n",
    "def test_accuracy(ov_model, data_loader):\n",
    "    correct = 0\n",
    "    total = 0\n",
    "    for batch_imgs, batch_labels in tqdm(data_loader):\n",
    "        result = ov_model(batch_imgs)[0]\n",
    "        top_label = np.argmax(result)\n",
    "        correct += top_label == batch_labels.numpy()\n",
    "        total += 1\n",
    "    return correct / total"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Select inference device\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "select device from dropdown list for running inference using OpenVINO"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "jupyter": {
     "source_hidden": true
    },
    "tags": [
     "hide-input"
    ]
   },
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "ff9e95c4d1a9464f980a05ebca58fcbc",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Dropdown(description='Device:', index=2, options=('CPU', 'GPU', 'AUTO'), value='AUTO')"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import ipywidgets as widgets\n",
    "\n",
    "core = ov.Core()\n",
    "device = widgets.Dropdown(\n",
    "    options=core.available_devices + [\"AUTO\"],\n",
    "    value=\"AUTO\",\n",
    "    description=\"Device:\",\n",
    "    disabled=False,\n",
    ")\n",
    "\n",
    "device"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "6f318f01f707487495bf8464a8884098",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/10000 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "b821f21f3d2345e3b598a02735be4173",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/10000 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "core = ov.Core()\n",
    "compiled_model = core.compile_model(ov_model, device.value)\n",
    "optimized_compiled_model = core.compile_model(quant_ov_model, device.value)\n",
    "\n",
    "orig_accuracy = test_accuracy(compiled_model, val_loader)\n",
    "optimized_accuracy = test_accuracy(optimized_compiled_model, val_loader)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Accuracy of the original model: 93.61%\n",
      "Accuracy of the optimized model: 93.51%\n"
     ]
    }
   ],
   "source": [
    "print(f\"Accuracy of the original model: {orig_accuracy[0] * 100 :.2f}%\")\n",
    "print(f\"Accuracy of the optimized model: {optimized_accuracy[0] * 100 :.2f}%\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "vQACMfAUo52V"
   },
   "source": [
    "## Compare Performance of the Original and Quantized Models\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "Finally, measure the inference performance of the `FP32` and `INT8` models, using [Benchmark Tool](https://docs.openvino.ai/2024/learn-openvino/openvino-samples/benchmark-tool.html) - an inference performance measurement tool in OpenVINO.\n",
    "\n",
    "> **NOTE**: For more accurate performance, it is recommended to run benchmark_app in a terminal/command prompt after closing other applications. Run `benchmark_app -m model.xml -d CPU` to benchmark async inference on CPU for one minute. Change CPU to GPU to benchmark on GPU. Run `benchmark_app --help` to see an overview of all command-line options.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {
    "id": "pC0gnO0c9-tI"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[Step 1/11] Parsing and validating input arguments\n",
      "[ INFO ] Parsing input parameters\n",
      "[Step 2/11] Loading OpenVINO Runtime\n",
      "[ INFO ] OpenVINO:\n",
      "[ INFO ] Build ................................. 2023.0.0-10926-b4452d56304-releases/2023/0\n",
      "[ INFO ] \n",
      "[ INFO ] Device info:\n",
      "[ INFO ] AUTO\n",
      "[ INFO ] Build ................................. 2023.0.0-10926-b4452d56304-releases/2023/0\n",
      "[ INFO ] \n",
      "[ INFO ] \n",
      "[Step 3/11] Setting device configuration\n",
      "[ WARNING ] Performance hint was not explicitly specified in command line. Device(AUTO) performance hint will be set to PerformanceMode.THROUGHPUT.\n",
      "[Step 4/11] Reading model files\n",
      "[ INFO ] Loading model files\n",
      "[ INFO ] Read model took 8.60 ms\n",
      "[ INFO ] Original model I/O parameters:\n",
      "[ INFO ] Model inputs:\n",
      "[ INFO ]     x , 1 , x.1 (node: Parameter_2) : f32 / [...] / [1,3,32,32]\n",
      "[ INFO ] Model outputs:\n",
      "[ INFO ]     223 (node: aten::linear_928) : f32 / [...] / [1,10]\n",
      "[Step 5/11] Resizing model to match image sizes and given batch\n",
      "[ INFO ] Model batch size: 1\n",
      "[Step 6/11] Configuring input of the model\n",
      "[ INFO ] Model inputs:\n",
      "[ INFO ]     x , 1 , x.1 (node: Parameter_2) : u8 / [N,C,H,W] / [1,3,32,32]\n",
      "[ INFO ] Model outputs:\n",
      "[ INFO ]     223 (node: aten::linear_928) : f32 / [...] / [1,10]\n",
      "[Step 7/11] Loading the model to the device\n",
      "[ INFO ] Compile model took 312.76 ms\n",
      "[Step 8/11] Querying optimal runtime parameters\n",
      "[ INFO ] Model:\n",
      "[ INFO ]   PERFORMANCE_HINT: PerformanceMode.THROUGHPUT\n",
      "[ INFO ]   NETWORK_NAME: Model0\n",
      "[ INFO ]   OPTIMAL_NUMBER_OF_INFER_REQUESTS: 18\n",
      "[ INFO ]   MODEL_PRIORITY: Priority.MEDIUM\n",
      "[ INFO ]   MULTI_DEVICE_PRIORITIES: CPU\n",
      "[ INFO ]   CPU:\n",
      "[ INFO ]     CPU_BIND_THREAD: YES\n",
      "[ INFO ]     CPU_THREADS_NUM: 0\n",
      "[ INFO ]     CPU_THROUGHPUT_STREAMS: 18\n",
      "[ INFO ]     DEVICE_ID: \n",
      "[ INFO ]     DUMP_EXEC_GRAPH_AS_DOT: \n",
      "[ INFO ]     DYN_BATCH_ENABLED: NO\n",
      "[ INFO ]     DYN_BATCH_LIMIT: 0\n",
      "[ INFO ]     ENFORCE_BF16: NO\n",
      "[ INFO ]     EXCLUSIVE_ASYNC_REQUESTS: NO\n",
      "[ INFO ]     NETWORK_NAME: Model0\n",
      "[ INFO ]     OPTIMAL_NUMBER_OF_INFER_REQUESTS: 18\n",
      "[ INFO ]     PERFORMANCE_HINT: THROUGHPUT\n",
      "[ INFO ]     PERFORMANCE_HINT_NUM_REQUESTS: 0\n",
      "[ INFO ]     PERF_COUNT: NO\n",
      "[ INFO ]   EXECUTION_DEVICES: ['CPU']\n",
      "[Step 9/11] Creating infer requests and preparing input tensors\n",
      "[ WARNING ] No input files were given for input '1'!. This input will be filled with random values!\n",
      "[ INFO ] Fill input '1' with random values \n",
      "[Step 10/11] Measuring performance (Start inference asynchronously, 18 inference requests, limits: 15000 ms duration)\n",
      "[ INFO ] Benchmarking in inference only mode (inputs filling are not included in measurement loop).\n",
      "[ INFO ] First inference took 2.29 ms\n",
      "[Step 11/11] Dumping statistics report\n",
      "[ INFO ] Execution Devices:['CPU']\n",
      "[ INFO ] Count:            117540 iterations\n",
      "[ INFO ] Duration:         15005.85 ms\n",
      "[ INFO ] Latency:\n",
      "[ INFO ]    Median:        1.99 ms\n",
      "[ INFO ]    Average:       2.11 ms\n",
      "[ INFO ]    Min:           1.25 ms\n",
      "[ INFO ]    Max:           118.00 ms\n",
      "[ INFO ] Throughput:   7832.95 FPS\n"
     ]
    }
   ],
   "source": [
    "# Inference FP16 model (OpenVINO IR)\n",
    "!benchmark_app -m \"model/mobilenet_v2.xml\" -d $device.value -api async -t 15"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "id": "4VR3-joFu9hH"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[Step 1/11] Parsing and validating input arguments\n",
      "[ INFO ] Parsing input parameters\n",
      "[Step 2/11] Loading OpenVINO Runtime\n",
      "[ INFO ] OpenVINO:\n",
      "[ INFO ] Build ................................. 2023.0.0-10926-b4452d56304-releases/2023/0\n",
      "[ INFO ] \n",
      "[ INFO ] Device info:\n",
      "[ INFO ] AUTO\n",
      "[ INFO ] Build ................................. 2023.0.0-10926-b4452d56304-releases/2023/0\n",
      "[ INFO ] \n",
      "[ INFO ] \n",
      "[Step 3/11] Setting device configuration\n",
      "[ WARNING ] Performance hint was not explicitly specified in command line. Device(AUTO) performance hint will be set to PerformanceMode.THROUGHPUT.\n",
      "[Step 4/11] Reading model files\n",
      "[ INFO ] Loading model files\n",
      "[ INFO ] Read model took 16.74 ms\n",
      "[ INFO ] Original model I/O parameters:\n",
      "[ INFO ] Model inputs:\n",
      "[ INFO ]     x , x.1 , 1 (node: Parameter_2) : f32 / [...] / [1,3,32,32]\n",
      "[ INFO ] Model outputs:\n",
      "[ INFO ]     223 (node: aten::linear_928) : f32 / [...] / [1,10]\n",
      "[Step 5/11] Resizing model to match image sizes and given batch\n",
      "[ INFO ] Model batch size: 1\n",
      "[Step 6/11] Configuring input of the model\n",
      "[ INFO ] Model inputs:\n",
      "[ INFO ]     x , x.1 , 1 (node: Parameter_2) : u8 / [N,C,H,W] / [1,3,32,32]\n",
      "[ INFO ] Model outputs:\n",
      "[ INFO ]     223 (node: aten::linear_928) : f32 / [...] / [1,10]\n",
      "[Step 7/11] Loading the model to the device\n",
      "[ INFO ] Compile model took 392.77 ms\n",
      "[Step 8/11] Querying optimal runtime parameters\n",
      "[ INFO ] Model:\n",
      "[ INFO ]   PERFORMANCE_HINT: PerformanceMode.THROUGHPUT\n",
      "[ INFO ]   NETWORK_NAME: Model0\n",
      "[ INFO ]   OPTIMAL_NUMBER_OF_INFER_REQUESTS: 18\n",
      "[ INFO ]   MODEL_PRIORITY: Priority.MEDIUM\n",
      "[ INFO ]   MULTI_DEVICE_PRIORITIES: CPU\n",
      "[ INFO ]   CPU:\n",
      "[ INFO ]     CPU_BIND_THREAD: YES\n",
      "[ INFO ]     CPU_THREADS_NUM: 0\n",
      "[ INFO ]     CPU_THROUGHPUT_STREAMS: 18\n",
      "[ INFO ]     DEVICE_ID: \n",
      "[ INFO ]     DUMP_EXEC_GRAPH_AS_DOT: \n",
      "[ INFO ]     DYN_BATCH_ENABLED: NO\n",
      "[ INFO ]     DYN_BATCH_LIMIT: 0\n",
      "[ INFO ]     ENFORCE_BF16: NO\n",
      "[ INFO ]     EXCLUSIVE_ASYNC_REQUESTS: NO\n",
      "[ INFO ]     NETWORK_NAME: Model0\n",
      "[ INFO ]     OPTIMAL_NUMBER_OF_INFER_REQUESTS: 18\n",
      "[ INFO ]     PERFORMANCE_HINT: THROUGHPUT\n",
      "[ INFO ]     PERFORMANCE_HINT_NUM_REQUESTS: 0\n",
      "[ INFO ]     PERF_COUNT: NO\n",
      "[ INFO ]   EXECUTION_DEVICES: ['CPU']\n",
      "[Step 9/11] Creating infer requests and preparing input tensors\n",
      "[ WARNING ] No input files were given for input '1'!. This input will be filled with random values!\n",
      "[ INFO ] Fill input '1' with random values \n",
      "[Step 10/11] Measuring performance (Start inference asynchronously, 18 inference requests, limits: 15000 ms duration)\n",
      "[ INFO ] Benchmarking in inference only mode (inputs filling are not included in measurement loop).\n",
      "[ INFO ] First inference took 2.20 ms\n",
      "[Step 11/11] Dumping statistics report\n",
      "[ INFO ] Execution Devices:['CPU']\n",
      "[ INFO ] Count:            210528 iterations\n",
      "[ INFO ] Duration:         15001.67 ms\n",
      "[ INFO ] Latency:\n",
      "[ INFO ]    Median:        1.04 ms\n",
      "[ INFO ]    Average:       1.10 ms\n",
      "[ INFO ]    Min:           0.71 ms\n",
      "[ INFO ]    Max:           79.19 ms\n",
      "[ INFO ] Throughput:   14033.63 FPS\n"
     ]
    }
   ],
   "source": [
    "# Inference INT8 model (OpenVINO IR)\n",
    "!benchmark_app -m \"model/quantized_mobilenet_v2.xml\" -d $device.value -api async -t 15"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Compare results on four pictures\n",
    "[back to top ⬆️](#Table-of-contents:)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "# Define all possible labels from the CIFAR10 dataset\n",
    "labels_names = [\n",
    "    \"airplane\",\n",
    "    \"automobile\",\n",
    "    \"bird\",\n",
    "    \"cat\",\n",
    "    \"deer\",\n",
    "    \"dog\",\n",
    "    \"frog\",\n",
    "    \"horse\",\n",
    "    \"ship\",\n",
    "    \"truck\",\n",
    "]\n",
    "all_pictures = []\n",
    "all_labels = []\n",
    "\n",
    "# Get all pictures and their labels.\n",
    "for i, batch in enumerate(val_loader):\n",
    "    all_pictures.append(batch[0].numpy())\n",
    "    all_labels.append(batch[1].item())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "import matplotlib.pyplot as plt\n",
    "\n",
    "\n",
    "def plot_pictures(indexes: list, all_pictures=all_pictures, all_labels=all_labels):\n",
    "    \"\"\"Plot 4 pictures.\n",
    "    :param indexes: a list of indexes of pictures to be displayed.\n",
    "    :param all_batches: batches with pictures.\n",
    "    \"\"\"\n",
    "    images, labels = [], []\n",
    "    num_pics = len(indexes)\n",
    "    assert num_pics == 4, f\"No enough indexes for pictures to be displayed, got {num_pics}\"\n",
    "    for idx in indexes:\n",
    "        assert idx < 10000, \"Cannot get such index, there are only 10000\"\n",
    "        pic = np.rollaxis(all_pictures[idx].squeeze(), 0, 3)\n",
    "        images.append(pic)\n",
    "\n",
    "        labels.append(labels_names[all_labels[idx]])\n",
    "\n",
    "    f, axarr = plt.subplots(1, 4)\n",
    "    axarr[0].imshow(images[0])\n",
    "    axarr[0].set_title(labels[0])\n",
    "\n",
    "    axarr[1].imshow(images[1])\n",
    "    axarr[1].set_title(labels[1])\n",
    "\n",
    "    axarr[2].imshow(images[2])\n",
    "    axarr[2].set_title(labels[2])\n",
    "\n",
    "    axarr[3].imshow(images[3])\n",
    "    axarr[3].set_title(labels[3])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "def infer_on_pictures(model, indexes: list, all_pictures=all_pictures):\n",
    "    \"\"\"Inference model on a few pictures.\n",
    "    :param net: model on which do inference\n",
    "    :param indexes: list of indexes\n",
    "    \"\"\"\n",
    "    output_key = model.output(0)\n",
    "    predicted_labels = []\n",
    "    for idx in indexes:\n",
    "        assert idx < 10000, \"Cannot get such index, there are only 10000\"\n",
    "        result = model(all_pictures[idx])[output_key]\n",
    "        result = labels_names[np.argmax(result[0])]\n",
    "        predicted_labels.append(result)\n",
    "    return predicted_labels"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).\n",
      "Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).\n",
      "Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).\n",
      "Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Labels for picture from float model : ['frog', 'dog', 'ship', 'horse'].\n",
      "Labels for picture from quantized model : ['frog', 'dog', 'ship', 'horse'].\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAACtCAYAAAAQwB2GAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5dElEQVR4nO2deVxU5f7HPwMDMyDLoCiIIKKpuWVp7qm5m5ZZmta1rna1NMHyarfSFnG7li3aVdtLrSy1Mu1mmqb+XMqu5pYLIhoZLpAYw6IgDPP8/kDOs8DggDNnBvy+Xy9ffs95vnPOc858z5mH57s8BsYYA0EQBEEQhE74eLoDBEEQBEHcWNDggyAIgiAIXaHBB0EQBEEQukKDD4IgCIIgdIUGHwRBEARB6AoNPgiCIAiC0BUafBAEQRAEoSs0+CAIgiAIQldo8EEQBEEQhK7Q4KMK7N27F127dkWtWrVgMBhw8OBBT3eJ8CISExNhMBg83Q3Cw9x5551o3br1NfV+//13GAwGLFu2zP2dIqpE6TOdmZnp6a7UGIye7kB1o6ioCA888ADMZjMWLFiAwMBAxMbGerpbBEEQBFFtoMFHJTl16hROnz6N999/H+PGjfN0dwiCqObExsYiPz8ffn5+nu4KQegGuV0qyZ9//gkAsFgsFepdunRJh94QBFHdMRgMMJvN8PX19XRXCA/BGEN+fr6nu6ErNPioBGPGjEHPnj0BAA888AAMBgPuvPNOjBkzBkFBQTh16hQGDRqE4OBgjBo1CkDJIGTq1KmIiYmByWRC8+bN8dprr0FdTDg/Px9PPvkkwsPDERwcjCFDhuDs2bMwGAxITEzU+1IJJ9m1axc6dOgAs9mMJk2a4N133y2jY7PZMHv2bDRp0gQmkwmNGjXC9OnTceXKFUnPbrcjMTERUVFRCAwMRK9evXDs2DE0atQIY8aM0emKCGfJzc3F5MmT0ahRI5hMJtSrVw/9+vXD/v37Jb1jx46hV69eCAwMRIMGDTB//nypvbyYj9J3ym+//YYBAwagVq1aiIqKwqxZs8q8Owj9sFqtGDNmDCwWC0JDQ/Hoo4/i8uXLWruzz3qjRo1w99134/vvv8ftt9+OgIAA7d2xefNm3HHHHbBYLAgKCkLz5s0xffp06fNXrlzBjBkzcNNNN8FkMiEmJgbPPPNMmfN4M+R2qQTjx49HgwYN8O9//xtPPvkkOnTogIiICKxYsQI2mw0DBgzAHXfcgddeew2BgYFgjGHIkCHYtm0bxo4di1tvvRXff/89/vWvf+Hs2bNYsGCBduwxY8Zg9erVeOSRR9C5c2ds374dgwcP9uDVEtfi8OHD6N+/P+rWrYvExETYbDbMmDEDERERkt64ceOwfPlyDB8+HFOnTsX//vc/zJs3D0lJSfj66681vWnTpmH+/Pm45557MGDAABw6dAgDBgxAQUGB3pdGOMGECRPw5ZdfIiEhAS1btsTFixexa9cuJCUloV27dgCArKwsDBw4EPfffz9GjBiBL7/8Es8++yzatGmDu+66q8LjFxcXY+DAgejcuTPmz5+PjRs3YsaMGbDZbJg1a5Yel0gojBgxAnFxcZg3bx7279+PDz74APXq1cMrr7wCwPlnHQCSk5Px0EMPYfz48XjsscfQvHlzHD16FHfffTduueUWzJo1CyaTCSdPnsSPP/6ofc5ut2PIkCHYtWsXHn/8cbRo0QKHDx/GggULcOLECaxdu1bPW1J1GFEptm3bxgCwL774Qts3evRoBoA999xzku7atWsZADZnzhxp//Dhw5nBYGAnT55kjDG2b98+BoBNnjxZ0hszZgwDwGbMmOGeiyGui6FDhzKz2cxOnz6t7Tt27Bjz9fVlpY/WwYMHGQA2btw46bNPP/00A8C2bt3KGGMsPT2dGY1GNnToUEkvMTGRAWCjR49278UQlSY0NJTFx8c7bO/ZsycDwD7++GNt35UrV1hkZCQbNmyYti81NZUBYEuXLtX2lb5TJk2apO2z2+1s8ODBzN/fn124cMG1F0NUyIwZMxgA9o9//EPaf99997E6deowxpx/1hljLDY2lgFgGzdulHQXLFjAAFT4/X7yySfMx8eH7dy5U9r/zjvvMADsxx9/rNI16g25XVzIE088IW1/99138PX1xZNPPintnzp1Khhj2LBhAwBg48aNAICJEydKepMmTXJjb4nrobi4GN9//z2GDh2Khg0bavtbtGiBAQMGaNvfffcdAGDKlCnS56dOnQoAWL9+PQBgy5YtsNlsZAPVCIvFgv/97384d+6cQ52goCA8/PDD2ra/vz86duyI3377zalzJCQkaLLBYEBCQgIKCwvxww8/VL3jRJWZMGGCtN29e3dcvHgROTk5Tj/rpcTFxUnvCoDHEq5btw52u73cPnzxxRdo0aIFbr75ZmRmZmr/evfuDQDYtm1b1S5OZ2jw4SKMRiOio6OlfadPn0ZUVBSCg4Ol/S1atNDaS//38fFBXFycpHfTTTe5scfE9XDhwgXk5+ejadOmZdqaN2+uyaXfrfpdRkZGwmKxSDYAlP3Oa9eujbCwMFd3n3AB8+fPx5EjRxATE4OOHTsiMTGxzKAiOjq6TM2XsLAwZGVlXfP4Pj4+aNy4sbSvWbNmAEriRAj9Ef/QAKA9m1lZWU4/66Wo73sAGDlyJLp164Zx48YhIiICDz74IFavXi0NRFJSUnD06FHUrVtX+ldqG6VJEd4OxXy4CJPJBB8fGssR5UNFx2oeI0aMQPfu3fH1119j06ZNePXVV/HKK69gzZo1WjyHowwWRkGj1RJnvk9nn/WAgIBy9+3YsQPbtm3D+vXrsXHjRqxatQq9e/fGpk2b4OvrC7vdjjZt2uCNN94o97gxMTFOnd/T0K+lG4mNjcW5c+eQm5sr7T9+/LjWXvq/3W5HamqqpHfy5El9OkpUmrp16yIgIAApKSll2pKTkzW59LtV9TIyMmC1WiUbAMp+5xcvXnTqr2TCM9SvXx8TJ07E2rVrkZqaijp16mDu3LkuObbdbi8zk3LixAkAJdkShHfh7LN+LXx8fNCnTx+88cYbOHbsGObOnYutW7dq7pQmTZrgr7/+Qp8+fdC3b98y/8SZV2+GBh9uZNCgQSguLsbixYul/QsWLIDBYND+Oir1+7311luS3qJFi/TpKFFpfH19MWDAAKxduxZ//PGHtj8pKQnff/+9tj1o0CAAwMKFC6XPl/7VUprR1KdPHxiNRrz99tuSnmo7hHdQXFyM7OxsaV+9evUQFRXl0nRH8ftnjGHx4sXw8/NDnz59XHYOwjU4+6xXxF9//VVm36233goAml2NGDECZ8+exfvvv19GNz8/v9rUmCK3ixu555570KtXLzz//PP4/fff0bZtW2zatAnr1q3D5MmT0aRJEwBA+/btMWzYMCxcuBAXL17UUm1L/8qhKXvvZObMmdi4cSO6d++OiRMnwmazYdGiRWjVqhV+/fVXAEDbtm0xevRovPfee7BarejZsyf27NmD5cuXY+jQoejVqxcAICIiAk899RRef/11DBkyBAMHDsShQ4ewYcMGhIeHkw14Gbm5uYiOjsbw4cPRtm1bBAUF4YcffsDevXvx+uuvu+QcZrMZGzduxOjRo9GpUyds2LAB69evx/Tp01G3bl2XnINwHc4+6xUxa9Ys7NixA4MHD0ZsbCz+/PNPvPXWW4iOjsYdd9wBAHjkkUewevVqTJgwAdu2bUO3bt1QXFyM48ePY/Xq1VrtEK/Hs8k21Q9Hqba1atUqVz83N5f985//ZFFRUczPz481bdqUvfrqq8xut0t6ly5dYvHx8ax27dosKCiIDR06lCUnJzMA7OWXX3brNRFVZ/v27ax9+/bM39+fNW7cmL3zzjtaWl4pRUVFbObMmSwuLo75+fmxmJgYNm3aNFZQUCAdy2azsRdffJFFRkaygIAA1rt3b5aUlMTq1KnDJkyYoPelERVw5coV9q9//Yu1bduWBQcHs1q1arG2bduyt956S9Pp2bMna9WqVZnPjh49msXGxmrbjlJta9WqxU6dOsX69+/PAgMDWUREBJsxYwYrLi5256UR5VD6TKspsEuXLmUAWGpqKmPM+Wc9NjaWDR48uMx5tmzZwu69914WFRXF/P39WVRUFHvooYfYiRMnJL3CwkL2yiuvsFatWjGTycTCwsJY+/bt2cyZM1l2drZrL95NGBijyCdv5eDBg7jtttvw6aefahVTiRsLq9WKsLAwzJkzB88//7ynu0PoxJgxY/Dll18iLy/P010hCLdAMR9eQnl1/RcuXAgfHx/06NHDAz0i9MaRDQAly7MTBEHUFCjmw0uYP38+9u3bh169esFoNGLDhg3YsGEDHn/88WqTOkVcH6tWrcKyZcswaNAgBAUFYdeuXfj888/Rv39/dOvWzdPdIwiCcBk0+PASunbtis2bN2P27NnIy8tDw4YNkZiYSFPtNxC33HILjEYj5s+fj5ycHC0Idc6cOZ7uGkEQhEuhmA+CIAiCIHSFYj4IgiAIgtAVt7ldlixZgldffRXp6elo27YtFi1ahI4dO17zc3a7HefOnUNwcDDVNqgGMMaQm5uLqKioMuXlq2oDANlBdYJsgADcYwdkA9WLimygPGWXs3LlSubv788++ugjdvToUfbYY48xi8XCMjIyrvnZtLQ0BoD+VbN/aWlpLrMBsoPq+Y9sgP652g7IBqrnP9UGysMtMR+dOnVChw4dtNLAdrsdMTExmDRpEp577jlJ98qVK1I54uzs7DIrBxLej9VqRWhoqLZdGRsAyA5qAu6ygbS0NISEhOArRX8z0jVZXKKrLyIlvSDpM4VS2/7c4/x8l85rcsNIuYLo3qOHNPnCjp94Q6xso/Xr8XMXXJHPZRXKsbN0YeVRm1KOXSzPnl9BqfZsoYy2VSmp7ScsgFZULJyrWNaDjYviPHiASVYTF1SrU09ui76ajZdfCEx577rswG3vAaH7AW27S03p2769/uNXgQuCvD/3stS2bSe3sft699bkTmb9IiVe/WiNtD3nn486/VnVBsrD5W6XwsJC7Nu3D9OmTdP2+fj4oG/fvti9e3cZ/Xnz5mHmzJmu7gahM+KUaGVtACA7qAm4ywZCQkIQEhKCQGW/Py4JMicQIZJeLUE2KYMPo4EPTXx9+Bn8QoIkPZ8gYXhjFs4WaHKo52OUfygMRQWazAKEY9iUv/8MfPl0MDscUiC8vv2VV7k4+BDdFWV+u4Rzi4dQj2cUjmf2k9uUgcr12IHb3gPCLTD4ytcWEhICT1AgyIEGuU+mQG61tYT+heg4+DAHqE+c8zjjInP54CMzMxPFxcWIiIiQ9kdERGiruYpMmzYNU6ZM0bZzcnKorkU1p7I2ALjODgZ3l0fbR3byvzZPV/poRFVxhw2MVPTvQn1NFocK6utZmGPAxzgrtW3fK8xi5F3UxPRIS7l9BAD/ps00OaZprNSWmsWPYU/6Vf5ggfBzYxNnHMyynlF4LRsFvTxldkPcViuhisdwdF5AnnURfw3MysxHmEU4ntKPzKvXXCAP7AAv+j0QLjumrkVq2p/FB3jmMG49u1NSJb28C/y73SwMnI4cS5b0LMHcGlNT5LdOToq4SrHQKbNiA2Y+2GsdzW2sa7uboRfhdeu49fger/NhMplgMpmurUjUaMgOCLIBgmzgxsHlczjh4eHw9fVFRkaGtD8jIwORkZEOPkXUJMgGCLIBAiA7IBzj8sGHv78/2rdvjy1btmj77HY7tmzZgi5durj6dIQXQjZAkA0QANkB4Ri3uF2mTJmC0aNH4/bbb0fHjh2xcOFCXLp0CY8+6ny0LFG90dMGXhjCfZM2wecOAEGCK9VcIDVB9tQSrsbdNuBsmOBecJ9+P8RJbbbed2nymawTmhwZLMcOmY3cj//zfh4nkpJ0StKzpxzmGylym+TXtwjHD1Y6XCTIFcV15Fq5XKDEckgxH0JcR65yjABj+W3BcsCt3D/lXKXP1ZWiMqqAl/weCLc+L3W/1HT/gOGaHN37Nk0+kHpC0jPa+L3yM3O5qEB+sdzVu5cmH1z4cpW6+5cgv//Ndr6hY8yHNcvq1uO7ZfAxcuRIXLhwAS+99BLS09Nx6623YuPGjWWCjoiaC9kAQTZAAGQHRPm4LeA0ISEBCQkJ7jo8UQ0gGyDIBgiA7IAoi8ezXQiiKrQS5E++4a4WZVIZWYKsVkzwqaCNqDlYbTzdMdwou10eEtwwxjAuKx46/IAjmnx705aanLxXSac9Jrha1LTWcMHVYhbcGqq3wsrTwyGkd8Km9Eo9vojorhH1FBcBCoSiY+KvgeqekY6hFiq76tMorKA/nka47PNmOd26eM/v5X7E0GeIvGPrf5061X8v8JO9PWqYU59RuX/kZE3evmatJj9b9HuVjlcV8tTUbhdDC8sRBEEQBKErNPggCIIgCEJXyO1CVEuOOtjfRNm+WK5WCeRquTEYpbhaRFaAr+eyS8h2Oa9klvy8d48mt25ziyZPGD9B0ntPqJ5p3y+7ZEJ68NTSnDRh6j/1N0kPqUJVzMwKLNhiETZ85bZ8wc9Q4MAFAziuhKoirgmjVmQtvVdFqjvGO7FfcNI95KSbReWRe++p0udEtq9+87qPcb0Y1e/ZxdDMB0EQBEEQukKDD4IgCIIgdIUGHwRBEARB6ArFfBA1ijRPd4BwOQdRsmrtrcp+R385faVsi8mOSnQF4sCr4xYER2ny8zuXS3oZRVZNDk87p8mRsEh60+/n1TLzBg2U2jbvP6DJR88LPdn9k6SHXCHVVgxPiJMjmmIH3a3Jp79ZKx9DzC0tEOJX1HCHIAcr6Kp6YppvmZTfq8u/27wn5iPxxHx5+97pfCPFuZiP9iPipW1jGE+PNufyY4QH15L05k39u7PddMi+E7zGqSU8rErHWPFTiiaP6tq00p9PSzt1baXrgGY+CIIgCILQFRp8EARBEAShK+R2IWoUhZ7uAOFybkXJInJ/KvvrXVivyccO8PTU4ZPl6XJ8+h8up8vVLZHGP1c8/nNNHjtkjqT2YgE/Vz/zYId9nbLqOU1ufUtLqS0pVUi93b2By/L6ZUCAIIvZjsrbepKwgNnTOzbIjYcF143F8TGk1FtrBXpBoktGcbuU6jLoj3B/6gzhKa7hucMltWEjeHXZDR+/7tShf1m1+Pr6dh20a1q+q0V9Bt5fzhed23tAXjDvYBrfPp7WT5MfvXeopNfYXP4SjUs/fNeJnlYdmvkgCIIgCEJXaPBBEARBEISu0OCDIAiCIAhdoZgPgiCqBfWU7RPfLdFkm1VIJ+0fISvu/JTLq/bIbbu5GHyexwVcSnxHUptdQZyHyKSRUzV5zMgucmOKkLoohk1YlYP4CbKYFVpfvi6b+PYuUMqwB4mKgqwu+5wvyJmCrFbWtogb2XJb0dWO2DywYIFQ6t5YwFNeTybJSdW2At7ngtxzqK5EGAzO67bprsmdY5ppshrj8dM3WzQ5LYvbkdkoDw8uO31m56CZD4IgCIIgdIUGHwRBEARB6Aq5XYhqiVjr0b11+AhvofW786Rt2wSeXjqtv/Aq699P0qvzK3e1XEx3fPzLM3lq4dxRD0ltzzftWe5nXrcdlLYPZ/HU3XvnTJfa1o0dyzdE94f6Fg4Xd3CfSUR4HUntjFglNUlxu5R/iLLnsjrQU90zQRW02a6e2xMFTvfy9OUMcHlh0kpJLVBY2NieCa9nT8oFTe7UTHU4OkfG4Z2aPLhrZ4d6FksDYcukSWEBsr1ddvGblmY+CIIgCILQFRp8EARBEAShK9Xb7RLO5wJbdZWrCfbrcZsmL3zavZXaHE5xEi5DrcH3aDiXPxemUVMUPap4WnM4+tybDtvGbBIevE1ytc9bBZfBFtVl4IAXmt0pbR+e8bAmr0z8hDfkywdcPo5nu4xeOEs+6KgHhRMIboEYWS32hWc1Odrsq8kFhw9LeufPCNPgWfIxpCqp4mqLSnFSp6noc2pmjDcQJ29eVu+PlxEd00PaPntmpwPNqpEjyBOf+0hq+2Xrt5p8exz/HT2bqmSGuRia+SAIgiAIQldo8EEQBEEQhK7Q4IMgCIIgCF3x2pgPv6gwGHx8cFu7W6T9rdtwn1RMDE8RCqofJOmZLW7tnkykIKs+ZauO/agC4ujTA/UJr8nLKHEpT1H2fyLEeTRC+TIAiN7/ql7ft/G88uXPubzK5JyP1eVIHSPe54l/55UHU1P+kPTW7z4Nonxem9NE2n76uQy+UUEsx24n4zwqYtVMXiV1+qgxmvxoXDNJ78B4vqLut29+KrVhzzYui4uW9u4qqa0e8pIm3wp/Tf5b6iOSXuZ5oVKn3A2ghZA+uUpYydcVMR91q3gMVxCkbDv6bvOV7bRyta4ivhn4k3oiRY4gGzGAx+xk5vIT39O/o6T3ohCzE9WitdT2/Rq+OvLAYXdX1CmX8t81v2jyilfGSm19xvPYpBXvrtWrSzTzQRAEQRCEvtDggyAIgiAIXfFat8ujfx8Jf5MJ4XXlKmvmIJ7XFWTmCwkVKFeSp2fK6xkdz+UCIhzsV7PRvCFNtVYtIMAAhCnTq8mCfF6Q5ZqScsbdYifPOUFJ0xv87IeaHHz4mCan2T6U9OoKNvjovaOlNpuF5waLtnohNUPSs6bM1WSj4Ep8KVG+suhIPq1uU/K709P4NPvenQf4MZZ8Lel5w/dbGabGD5e2Nxh5KuCWN4V7kCR/rkoLYsUpT4nwPb3RrK8m9/rHfZLa4x++osnzB/1TblvFK7SuPyysaGeUv78n1zyjyQ904G5nW55cxbRFHHcH5sXLVV33JW7W5Cajuas6T3THAMgYtxmVxlHaqhv9tmEo+Uv50ecflPa/Nm1lufqoRKZqIbj79OB+ntrcqb3qyyqfdz47oWx/6kDTvRQzJm0Hh0Vr8sPDOjj83JZ3lwtb+tWLppkPgiAIgiB0hQYfBEEQBEHoite6XWoFBcFkNsGodNFo49uZ6RcF+Yqkl+XOK7tN2T5QrpbXIk70N3Co5R1csgHFBqCvsn+VIHcX5L2KnriG1MLu8jRqZiZfmOv22/id6Df+GUnvXBq/Y4e38oyFgjQ5MyW6HT9+5rFjUpsxJlaTLW24XlBcQ0lv1pznNdlcn0+r39RC7vvxJD7Vm5WVLbV178rvSGTd5prcoXsbSe8/M3mU+zrFVeFNpAEIBmCB7Mb4z3juGmnV4kneMFJZZK2CxeQcorjDugmyWJB0zEeyK6tnfb4w1//N+Vxq+3bkNKGPXNyKVEnvb5N5xsxN93M3w31TZddb0qaNmjywhZxx8Wwb7tZ5cxB3DZ2JMUl64+Ck20XMdlFd2qXeQQa3UerpOe8Gf/rsVdzVOedBz7hMqsrYp/j7Qp1JuGw9C+fwzNKcNPNBEARBEISu0OCDIAiCIAhdocEHQRAEQRC6YmCMudFTV3lycnIQGhqKEU8nwM9kAmyyj0/MSssTfN0FiiNS3E4/IPvfjx749fo6qaRiSqs6erHv3J1kZ2cjJERde7bqlNrBAt+SVFur4uq1CLJY9PBhOOa5IXI64mPjuT+9cRdePdN+RvaVPjuWp81+spd3JBIyk/7O40Y2r5aPEdSCy/9exVN0g8xy1I3NymWjhQcuBdatJemdSxXSaffLQUcdbhHS6vK5cVoL5DgGo43HrDzTh1fVXAeZToL8PzjGXTawKPsQAkKC0U958CJxUJO/AF/xdt6KZZKedTKXz2ZCJk4IDkt1Lp4gQZArSt9euE9eTfupdo87dfyfdhzR5E/O79Dkt0dOlBVThbKdZmVp3PoODp70nrRpaDneqT5VSOktZACKXWsHpTagYVEUrC44iWhWqQ61vJKKfr4nvbBIk7PyeK2CFW+qBQlcjzM2QDMfBEEQBEHoCg0+CIIgCILQFa9Ntd2bfBw+fn4wKm6XIMHHIXo7zMqVhNflKWVNu7aU2oxCCtKhVCUtzxlcMTWn3nlxu6qLP9VA6piBQAPQ1OxY5y11Kt0Bm/fL7raHzDylEWE85fW/Hy+T9N4QXC1iEcdGyvGPfMPt6mflO4wUPCNG2yVNDoxRkp1F94p0zfKKWlEtuJvo3rhYqc2exfvrY+QVgqPqyos0ikY3/wPuwjSOe13SeuAf/PnpMkqu6BnbZy7cTXbmX7hypRA7C2RX1qgYnmo7Cl24PEp+uO785gNNNveWDemj8dwmehqcq2jpbKXcyT1ll8aBxC81ednUFUKLvFJb1x58MbKuuY7qEQOIi3HcJvLCx1yeK/dJtD5nEzPLoGc1aasbjlnNXC3OsmjOJE3+SnDl6eF2cQaa+SAIgiAIQldo8EEQBEEQhK7Q4IMgCIIgCF3x2piPvEtp8DH6Isgo+2iNwrYliKdgxcXJvvPoGO7rzkyTy8d278VLTj9wP/exv/B6FVZ4rCrqIoNijICQQQcn4xlqKk1qAUE+gDFM3i9mNH/l5D3ad0ZZQdYqbnO7Sr8g64ke+YEVHP+w1XFbPyHVtnbTKKElVFY0iz5+0SjkmA/p7wazvOSvTxCPKUFwU8edEmjW9S5NTocc8zHvI56qPjdGXmU6xAIwBuTKFd5dSsfwdqgVEgLggtIilgq/S5AfkLS+WcVXw+1dsE1q+wLCvRohFOpfXYllUR1hkTeXv8vfLzGCJc1+/ClZMVhYvTdYtD5lfd414rXskdu2/qGJ9iXLNFl5jJCDaoIJgAEVx8OJj4iaaizGdegZo+JiWoU7F5eksuB1ZyOV9INmPgiCIAiC0BUafBAEQRAEoSte63YJrQX4+gE31ZeneeMiuXulURiforaEy9PXeVY+D7xZWP0RAA7t5dPUibP5apD33i/3YfMaLisTnteP6irw2m/Cs9SJ9EWwrwGZRvkG7Uq7/nzklGM8zbLH/bz6ab9BciXUyBQ+XR4spN1uUFL0TgqyRTnXfUMEt6CxCRxTletSfB5+VTCmcJ5qHG6RXTw/Wvnz8reZsjtCj2n7PUiHGZcwVZlLz9HWOgV+F/bfojgXQjBAk98yD5DaXsJ6rjeSf0c56krVKZXrMwBA9oYhVpgxf+OF/Zr8T8iVUGtHCxWZH3xFE09ARuxSF6XtuCAL6/0ip4uclo1UYWXmqqz+qxdNAPjCeZeJ+hhV9EhUIzdMXrDjmgOTnntL2l78SrwDTe+AZj4IgiAIgtAVGnwQBEEQBKErXjvZ367VzfAz+aF+sEXaH27m7hWLmUe7RwbL7pmmHbtqcvfe7aS2Lj1GavI9Y4dq8oz6b0p6M5/mC49lpvA51MXfyFVR7xXmPDfvlq/DobvmvLJdt1wtokFDwM8HB1LkjKWFLpgiPnhAmFvnM/ho3FWermzclacm/fE6X4At8mU5cyJacKWdUU9mFt2Cgq3alPnhLGFyva6Y+aJWurQKsvIYK4vVOcOfeYJNq5kCwqkClCY93C4vfDUTCPRH9Ej5+RwpuFfCBfkrFEp6w+CvyR0h8w0Ga3LdcCHL51n5nTHSeLcmrxw9WZOHrnhR0luXsIRvWOVznRYSUhLGc9db7RGjZMUDPAPnTmH3dllLsogMOEfzdnKaXfLu0w40vYwGAPxQ1kUiPLdSRWDF5eXqKqZj4+dr8kuz/yW1LX2XL96XOM0FC/cJnE6VqzQbDAaXHl9PaOaDIAiCIAhdocEHQRAEQRC6QoMPgiAIgiB0xWtjPhoExcBkNuGmaNl/3aUd98W2bNqzSse+cp77b19cwasJths1XNK752+84mGjML6y5+Jv5FUB8wQ/ZNM28rkOHXayU0WCLH4rambVjbbirdkf8PPFoqRrq1aWxWt+0uQXp/L0xnpd4xTNOzSp4d94NcpH4uTVkoPe5f7+zzfJR0gRYlSiU4T4iiw5Tdacx9cWDblNqOAZLDu7cy7wY4TUb6z0txbKR64Q+ueODZq8eflKTbYlyQ7ztoJ8u3LEgwCKr/7vNj7/DPADHrTKsVYjx3+jyWLN2LwsOSl1fxh/oNrhZqlNDB1K67FVk3u0eVrSW/Uijzd5b/QMTf7PqARJ7764ezT5i+8+ldrWL+fbWWJl25iJkh5i+NrJmbN5oEhs+iVJbW4H/r6KMcoxQZ8H8CiQwyf4/fhx2iuolphREvOhvg8tgiy+N93wvhD5cMkzmrz0Ozn2a9bzz2ryqRwmtUUHc9lkiBRanI3aqTnQzAdBEARBELpCgw+CIAiCIHTFa90uiZPmIiQkxE1HD9QkS31e2XHuDjnFsotQKLF23FCHR9uyl8udelexS47cKep6YuK0o5p2pqaX1QDWbk+G2QfY5+bzDBrHp7B/OXZRaeX2gvq3aKKllzwH3D2cT30bLUukNmMkdxfu/omnyxVY5S+tewvuZgwSHs/j++UUO0sYn7YPKTMXLRoGN6y/Dm+QtF4dNVqTLwi5wXfBMeoLowAlHsODFXzmujmFkuqWr/9X2n1nj3Wa/H8t7tXk0WGtJb1XfvpMk4O6RkltzcDfMZfB3R1dwuSk3EPRPA03dNNtmtzHeIuk16/DUE1+ouvzUtuZgt80+eSBs3AM/5vwyAtfaPIJJYXYaONT9Y2NMVJbD0EevmIB37Ao36C1mpT3LHW7qO848XLES1FLF4jVqxWX6PW+N+2p8nP1wrgNgnx9x67J0MwHQRAEQRC6UqnBx7x589ChQwcEBwejXr16GDp0KJKTkyWdgoICxMfHo06dOggKCsKwYcOQkXHjBdPcyJAN1Hw2ApgHYBWA0vmHlBR5ARSyA4JsgHCEgTHGrq1WwsCBA/Hggw+iQ4cOsNlsmD59Oo4cOYJjx46hVq2SCPsnnngC69evx7JlyxAaGoqEhAT4+Pjgxx9/dOocOTk5CA0NRXZ29nW5XQqF0nc2ZRW3QDTV5KEf8ojjzTvkh+LvLbgcLkxzz5msLOQluEwCb5ObLqsLVJViUbYduVMqmhVVXTUezIQ5d+4c6tcvKY15vTYAcDsIAGCAGxb2q4DtX/1H2u5x/1hh64om/Xp4q6S3d49Q3jZNzrhIF0wwM1fIYrHJ0+CNYkTXDf9Cjycdk/TuHsadIwOGqHO7YrYLN6ytS56UtO4RqnE+JOx/MhoOybs6RT0lD+jjB+TnA/kA3gEQExODpKQkl78L0BIlbhd1cbfR3OWR8c4hTa5XwTF3XPhF2u5RV83fKWEmPpK2Ey+s5RurBffPT5AZJnyfJ5SHt4B/t60y+QJva+atldSaBaslZssnekAnTf7X7KlSW7+OQzV5836eMbNzr2xHX01wbQVOwLXvAs0GHgbgjzJVYx0GDqgVpEV2VtBGOEZYENMnSM6os2uZaHYA5536/a5UzMfGjfLqsMuWLUO9evWwb98+9OjRA9nZ2fjwww/x2WefoXfvkuCHpUuXokWLFvj555/RuXPnypyOqEYcPHgQ9evXJxu4QXjjaizSznw+5k1LS6N3AUHvAsIprivmIzu7ZAagdu3aAIB9+/ahqKgIffv21XRuvvlmNGzYELt37y73GFeuXEFOTo70j6h+hIWVROdWxQYAsoOaAr0LiOt5F5AN3DhUefBht9sxefJkdOvWDa1bl0SXp6enw9/fHxaLRdKNiIhAenr5K4HNmzcPoaGh2r+YmJhy9QjvpmXLkoJbVbEBgOygOlOaI9K5c2d6FxDX9S4gG7hxqHKqbXx8PI4cOYJdu3ZdVwemTZuGKVOmaNs5OTkuMbiAxrU12a6uaCj6tMU0K6U66TuiSz9diPOoIA7DYYyHinrnxe0CB3J52zUER3aQ74G+PP6UHBtxvJ+wEmgwT4VN2yN/2TMm8HTMs27OYHzvY+64zs/pJbX5BDcXtniacBBiJT0xjkZ8iqeESWqwCOnekWFy7rfxQh7mpALIBD76SI6TqCwO3wXtUOLvV0Mh9vD044hvJmsyG7LQ4TnUGI91qXyt2HvjeMXkGfiHpGery5//w/E8PX9dGzmlGmnCFy+HmgG38Ziyo+9yedZUOYX40+DHy++8wrTX/q3JZ/KtUtvhXL5arS2vWJMPfrMXDokWXkJnPJOC68gG/MIBgwko9JP161i4LGYRn1dKFAQIn7tYxZiPkEFcLhBi9AqtiuIOQa4mmczlo9xEo68mmoPkNpu55IYwezGK/qwo4EY4XFW6lJCQgG+//RY7duxAdDT/JY+MjERhYSGsVqs02s3IyEBkZGQ5RwJMJhNMJlO5bUT1oyo2AJAdVFdePQ38fPV3uUEDPjCjdwFBNkBURKXcLowxJCQk4Ouvv8bWrVsRFyevgdG+fXv4+flhy5Yt2r7k5GT88ccf6NKli2t6THg1ZAM3BowxTDt6BduzgNealm0nOyDIBoiKqNTMR3x8PD777DOsW7cOwcHBmt8uNDQUAQEBCA0NxdixYzFlyhTUrl0bISEhmDRpErp06aJ7ZLM9t4JGcerOKsh6pmCpU7LVnPz8fISEhHiVDVSV5DPqniuCzP1eBeflL9HdrhYRsdblUxPkyryLln/JN4zch9IxfoykNyqRL461QriUzUrFx4duq6PJ6ZklKXVzjwIbzgFzmgC+V2djMzIy4Ofn5753gVrtV3x7vcwXfjOskhd0G7BiuSbPx2CprUWcc4tTzsY/y93/W4/Z0nYTCLn2BadlZfG+Cl/ZirRnJLVP45xzu8S36aPJryfJ7u/jB3g11TfmfqDJOZu+hEPihGqtZ/Y71YfycMe7IDIU8DEDZsUGzIINiI+f0c+xXlWxCa4Wm+j+rui3pppRpwNfGDEr0yq11Q8P1+QCq9yWlVVyQ5i9GM5SqZmPt99+G9nZ2bjzzjtRv3597d+qVas0nQULFuDuu+/GsGHD0KNHD0RGRmLNmjWVOQ1RDRG/Y7KBms/qP4BcG/BUMvDw1ZWbmzVrRu8Cgt4FhFNUajzoTD0ys9mMJUuWYMmSJdfUJWoOo0aN0mSygZrPoavBd9YLwKViYNB+lCksRHZwY0LvAsIZaG0XgiAIgiB0xWtXtXXEH4I8691Fmnxw6w5Jr1XTrpqc11ReQdJm5GluZ1NraO4q4TpsYilh/shYFbVuLXgJ/h+TlBL8bmTxZ4p/Pp2Xg39sBl9Zde/ePZLaL7ZQYYv3d7KSmp5u5Kv8GpUsusgCIN/pBRqqyDmU3PYLyn6rIIvLE6TJqxJ/3+duLjdVggZGPKiJrXrwIMjWafJ7YWXcxHK71hhyXjIDrwJtGDtMVl4ilDYXqwmskW1lTBxPlV4WI6+dJfKnIG9Y8a3Utm0T/67te7c5PIbEzqrHebgb2yXAx1ZmNQIYhe084SsrcEWOvnKuy2LMjviMqLFeMQ70vJTANnyphjt7d9fk31OUmCWbcKFhoVJTZGTJzS+2FeH47kNwBpr5IAiCIAhCV2jwQRAEQRCErlRqVVs9KF3F8IlPFsIUGIBPPpTT5i6mCY6XAmGeLV+ZTj0jpkHqNwXuUcRpQp0r613vKsQq2mqWXgD7i1eFLMy7pMlvL3lH0jOa+dx/wsxlbu+XN/CyBShgQGK2G22gMUpWtVULJ4rT4OGCrFZCFT0ozrpu1GO89rAmzukwXJOfj7lX7bbGH8rJYrOE9XbfFBrUqsjCq2ws9x7jg/hVktqvH/IldduOexMupWlLeTvlWPl65eBKOyi1gZsWAL4BQGqS3C5+ZeI7Ly9L1rOLtvJNFTtjdiCrVFSh2gt5YeUPmpxn5SEJqYdPSXp5Wfx3NEjJXS4oKLn5tqIr2PLFYqdsgGY+CIIgCILQFRp8EARBEAShK16b7fL2I5Mr+YmMa6tUR5TF7iBWtFeD08tU5iRcQhifYy04c0KTbXlyVsXJA0p0+A3Ac1YdTlIMgKHiKeyKKgaLLkhrBXri8dUshWHc/fvCMv6uaTS6gaRmucDdcoPrNpTaWBivlGtIFFyKtygXdpiLH37G5V3LR0pqN1ewRpyzhPyd+3h6BQv1OS7IlSpXVcLt4g4yMkoWlrMp7mSx6miAsD8sWNbLF27xZVQR8WuqyAUjRgAo1YIrtD9nUH+xxfuh9sPB89L+73JF5OimjTX5yF7+TlMXjyvI5fZr9qsltdmuhjYwHzdVOCUIgiAIgrheaPBBEARBEISu0OCDIAiCIAhd8dqYD+Iq6kqeYgqg4tck3EQqrzJpFpysJ5NkP/h7W+VKuoSLKELJn0nOpo+reqrf/XoZs1kTH7bK3/my+H9rsh1yqvjJ3N2afCqY59c2WddCPr6wuKzY92QlxsNx7VPnmVLAT/BQ/46aPGTMeBcc3XXknQIMfkCQEtdQ18JlMR7kgpJSffknXD/i1yS+l9X3cEUlD8R+pQhyRfFMYhp53Qr0VIR044j+TTT5jcWLJbW0zBy+EcRjOTKVABurUNoiKLiO1GYrKol1KgbFfBAEQRAE4aXQ4IMgCIIgCF0ht4u3s/sa24TbObGH3/RmLZtp8gbFzWLXrUc3GDZU7s8kq7LtzrfcZNn1NuaroZps27FWausQLKTl5nLb+SDuXUlvXAvB5SG6WpxMpawMiatFeaxjRQ9jBGBA2VRb8asVvWuX1e9cLFGgukJEV4boTpHXDISPcAy7uHCdei7xe1FdfuLxLYJsVfTEY4rHC1f0hEXs/BX3T2Ealx+4ly+geD4lR1YM4JVILXW5jQZZ5PIVeYLbJc8s30QjTAAA5ut8wXSa+SAIgiAIQldo8EEQBEEQhK6Q24UgrkFeAa/6t+dXXlbWHfVMmwvTsinClO0N7dIxovw/kyqqJOkpdnJxXMuhctvzfJW4xaOma3K07YqslyjIcwRZrboqVnXVeSFJvbHUAXxMZX+wrML3niHeA1WxqSAryUXSvaugYqj0DFb0yyl+TtULqKDNUZ9EVDsXbKDQ6rgf9/Xrrsmpe3+T1M4kCe4UsXtGOaMlMpxnb9lsSlaL7aqLpjgfzkIzHwRBEARB6AoNPgiCIAiC0BUafBAEQRAEoSsU80EQChMUn3CQmT8mL73+YZWOGSLIfoJcpOgle0vsgjdRgPL/THL2XnkqHiJJ2X6Yl9lMWHK3Jg9e9bCktm/QD5p8YBCvY5qOE5DhQS8vbZVLeNonb9PkJkNaavLJOf+GjEWTbk3gcSiHlriiJKjrKA37UVNtRXyEcAO7qiduV5D+2kRMyVVSbVOF1FWj8MtpVmJD8oRz2ZVKq9IDX1HMkqM4FDW9WuhTmTTcXC6+NI2vWNwmup+kFt2M28etke00+ab6csxHXgG/0JSUbLnt6hdTZHB+zWCa+SAIgiAIQldo8EEQBEEQhK4YGGPOlyTTgZycHISGhl5bkfAqsrOzERIScm1FJ6mqHTRQtp1d6q2TID/WP0Jqswlzvc9svQhHdBemXwuU6VFxVlXMkDzlZP+qA26zgdoo+TMp81qfqCG04WLPD+7R5C4dW0pqRmE+vlGSPPffvSlPrWxmFO1ZPkYh/qvJJsPwqvS2DK60g1IbCH4YMPgDAX5ye77gasmxCg2q28Xi+BziX+AduNehjIcjXXCh2CpI670oulpUm3VQktVfWUBU8PQiR3StKAvL+Qj9MFcQRGEUFpmrr1RCDReqpLZpyhegCzI2lvSim/bin4nsKLUF2UoqP1/Oy8Xf+rRyygZo5oMgCIIgCF2hwQdBEARBELpCgw+CIAiCIHSFUm0Jr+ZmAL4o6zp1VMHYquiJXkc1m00slywuHhq5SVnNUZBvE+SblOPlCU5i1eUsZsGJ/Y1W9KyCfAgEAOAvT3dAZw5zcXsnHpOxXYjPuBZ1ZvOYj4H1eSDDinfflBX3olpQYAMMPkB9JeYhXIiVsAqly9UftvNC2mmhEsxhF46ZKcSQqHFbuUIsh1GIPcnJlfWQLshKGq6P0LGKlkyQzi2WZFdeYnWF6y+z6LEQ5xEuXKNRiS9JF/Rse3gUmiVIjkhLSt2sydYs+Q6HB5fEEhUVKmXXK4BmPgiCIAiC0BWvm/nwsuQbwklc/b2VHq90HK3+lWB3QgYA5kAucz5BVgt/Oar3U6joFTnQU49fUc0r5/9u8D7cZQNE5bEXcCsryhcWrtPBwFz5vZUei119uIqVNfgMYkEv4YEs8x4QH071ARc/J8w42JVzMUGPOfvCUNqYb/l6zNmXjoJd+FyZd6TwuWJBz6C8uMRjSKdV9NgVsU3+jktnPEr/d8YGvG7wkZurzmER1YHc3FyXpkiX2kGKy45YMeKj8p2Tn/nRHR2pxrjLBojKkzV3tyavxu4KNF2PK+2g1AZsX5Vsn3TJUR2jLhzsahz9JKtjD2dRC6her57z16+OYo9KW87YgNfV+bDb7Th37hwYY2jYsCHS0tJcWjugOpKTk4OYmBivvBeMMeTm5iIqKgo+Pq7z4tntdiQnJ6Nly5Zeed2ewFvtwJ02QO8CGW+1AcA9dkA2UJaaYgNeN/Ph4+OD6Oho5OTkAABCQkK87gZ7Cm+9F+4oCufj44MGDUpKhnnrdXsKb7wf7rIBeheUj7feC1fbAdmAY7z1XjhrAxRwShAEQRCErtDggyAIgiAIXfHawYfJZMKMGTNgMpk83RWPc6Peixv1uh1xo96PG/W6y+NGvRc36nWXR025F14XcEoQBEEQRM3Ga2c+CIIgCIKomdDggyAIgiAIXaHBB0EQBEEQukKDD4IgCIIgdIUGHwRBEARB6IpXDj6WLFmCRo0awWw2o1OnTtizZ4+nu6QL8+bNQ4cOHRAcHIx69eph6NChSE5OlnQKCgoQHx+POnXqICgoCMOGDUNGRoaDI1ZvbkQ7IBuQIRsgGwDIDmqkHTAvY+XKlczf35999NFH7OjRo+yxxx5jFouFZWRkeLprbmfAgAFs6dKl7MiRI+zgwYNs0KBBrGHDhiwvL0/TmTBhAouJiWFbtmxhv/zyC+vcuTPr2rWrB3vtHm5UOyAb4JANkA0wRnZQU+3A6wYfHTt2ZPHx8dp2cXExi4qKYvPmzfNgrzzDn3/+yQCw7du3M8YYs1qtzM/Pj33xxReaTlJSEgPAdu/e7aluugWygxLIBsgGbmQbYIzsoJSaZgde5XYpLCzEvn370LdvX22fj48P+vbti9279V0W2hvIzs4GANSuXRsAsG/fPhQVFUn35+abb0bDhg1r1P0hO+CQDZAN3Kg2AJAdiNQ0O/CqwUdmZiaKi4sREREh7Y+IiEB6erqHeuUZ7HY7Jk+ejG7duqF169YAgPT0dPj7+8NisUi6Ne3+kB2UQDZANnAj2wBAdlBKTbQDo6c7QJRPfHw8jhw5gl27dnm6K4SHIBsgyAYIoGbagVfNfISHh8PX17dMtG5GRgYiIyM91Cv9SUhIwLfffott27YhOjpa2x8ZGYnCwkJYrVZJv6bdH7IDsgGyAbIBgOwAqLl24FWDD39/f7Rv3x5btmzR9tntdmzZsgVdunTxYM/0gTGGhIQEfP3119i6dSvi4uKk9vbt28PPz0+6P8nJyfjjjz9q1P25ke2AbKAEsgGyAYDsoEbbgWfjXcuycuVKZjKZ2LJly9ixY8fY448/ziwWC0tPT/d019zOE088wUJDQ9n//d//sfPnz2v/Ll++rOlMmDCBNWzYkG3dupX98ssvrEuXLqxLly4e7LV7uFHtgGyAQzZANsAY2UFNtQOvG3wwxtiiRYtYw4YNmb+/P+vYsSP7+eefPd0lXQBQ7r+lS5dqOvn5+WzixIksLCyMBQYGsvvuu4+dP3/ec512IzeiHZANyJANkA0wRnZQE+3AwBhj+s2zEARBEARxo+NVMR8EQRAEQdR8aPBBEARBEISu0OCDIAiCIAhdocEHQRAEQRC6QoMPgiAIgiB0hQYfBEEQBEHoCg0+CIIgCILQFRp8EARBEAShKzT4IAiCIAhCV2jwQRAEQRCErtDggyAIgiAIXfl/Jg70QihiMYIAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 640x480 with 4 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "indexes_to_infer = [7, 12, 15, 20]  # To plot, specify 4 indexes.\n",
    "\n",
    "plot_pictures(indexes_to_infer)\n",
    "\n",
    "results_float = infer_on_pictures(compiled_model, indexes_to_infer)\n",
    "results_quanized = infer_on_pictures(optimized_compiled_model, indexes_to_infer)\n",
    "\n",
    "print(f\"Labels for picture from float model : {results_float}.\")\n",
    "print(f\"Labels for picture from quantized model : {results_quanized}.\")"
   ]
  }
 ],
 "metadata": {
  "colab": {
   "collapsed_sections": [],
   "name": "tutorial_tiny.ipynb",
   "private_outputs": true,
   "provenance": []
  },
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.9"
  },
  "openvino_notebooks": {
   "imageUrl": "",
   "tags": {
    "categories": [
     "Optimize",
     "API Overview"
    ],
    "libraries": [],
    "other": [],
    "tasks": [
     "Image Classification"
    ]
   }
  },
  "vscode": {
   "interpreter": {
    "hash": "916dbcbb3f70747c44a77c7bcd40155683ae19c65e1c03b4aa3499c5328201f1"
   }
  },
  "widgets": {
   "application/vnd.jupyter.widget-state+json": {
    "state": {},
    "version_major": 2,
    "version_minor": 0
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}