Spaces:
Runtime error
Runtime error
File size: 52,675 Bytes
db5855f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "99b677ff-3399-4f27-ac0f-782bfe25f151",
"metadata": {},
"source": [
"# Grammatical Error Correction with OpenVINO\n",
"\n",
"AI-based auto-correction products are becoming increasingly popular due to their ease of use, editing speed, and affordability. These products improve the quality of written text in emails, blogs, and chats.\n",
"\n",
"Grammatical Error Correction (GEC) is the task of correcting different types of errors in text such as spelling, punctuation, grammatical and word choice errors.\n",
"GEC is typically formulated as a sentence correction task. A GEC system takes a potentially erroneous sentence as input and is expected to transform it into a more correct version. See the example given below:\n",
"\n",
"| Input (Erroneous) | Output (Corrected) |\n",
"| --------------------------------------------------------- | -------------------------------------------------------- |\n",
"| I like to rides my bicycle. | I like to ride my bicycle. |\n",
"\n",
" As shown in the image below, different types of errors in written language can be corrected.\n",
"\n",
"\n",
"\n",
"This tutorial shows how to perform grammatical error correction using OpenVINO. We will use pre-trained models from the [Hugging Face Transformers](https://huggingface.co/docs/transformers/index) library. To simplify the user experience, the [Hugging Face Optimum](https://huggingface.co/docs/optimum) library is used to convert the models to OpenVINOβ’ IR format.\n",
"\n",
"It consists of the following steps:\n",
"\n",
"- Install prerequisites\n",
"- Download and convert models from a public source using the [OpenVINO integration with Hugging Face Optimum](https://huggingface.co/blog/openvino).\n",
"- Create an inference pipeline for grammatical error checking\n",
"- Optimize grammar correction pipeline with [NNCF](https://github.com/openvinotoolkit/nncf/) quantization\n",
"- Compare original and optimized pipelines from performance and accuracy standpoints\n",
"\n",
"\n",
"#### Table of contents:\n",
"\n",
"- [How does it work?](#How-does-it-work?)\n",
"- [Prerequisites](#Prerequisites)\n",
"- [Download and Convert Models](#Download-and-Convert-Models)\n",
" - [Select inference device](#Select-inference-device)\n",
" - [Grammar Checker](#Grammar-Checker)\n",
" - [Grammar Corrector](#Grammar-Corrector)\n",
"- [Prepare Demo Pipeline](#Prepare-Demo-Pipeline)\n",
"- [Quantization](#Quantization)\n",
" - [Run Quantization](#Run-Quantization)\n",
" - [Compare model size, performance and accuracy](#Compare-model-size,-performance-and-accuracy)\n",
"- [Interactive demo](#Interactive-demo)\n",
"\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "efafd7fb-95ea-47c0-9441-7b2bbb8e6b89",
"metadata": {},
"source": [
"## How does it work?\n",
"[back to top β¬οΈ](#Table-of-contents:)\n",
"\n",
"A Grammatical Error Correction task can be thought of as a sequence-to-sequence task where a model is trained to take a grammatically incorrect sentence as input and return a grammatically correct sentence as output. We will use the [FLAN-T5](https://huggingface.co/pszemraj/flan-t5-large-grammar-synthesis) model finetuned on an expanded version of the [JFLEG](https://paperswithcode.com/dataset/jfleg) dataset.\n",
"\n",
"The version of FLAN-T5 released with the [Scaling Instruction-Finetuned Language Models](https://arxiv.org/pdf/2210.11416.pdf) paper is an enhanced version of [T5](https://huggingface.co/t5-large) that has been finetuned on a combination of tasks. The paper explores instruction finetuning with a particular focus on scaling the number of tasks, scaling the model size, and finetuning on chain-of-thought data. The paper discovers that overall instruction finetuning is a general method that improves the performance and usability of pre-trained language models.\n",
"\n",
"\n",
"\n",
"For more details about the model, please check out [paper](https://arxiv.org/abs/2210.11416), original [repository](https://github.com/google-research/t5x), and Hugging Face [model card](https://huggingface.co/google/flan-t5-large)\n",
"\n",
"Additionally, to reduce the number of sentences required to be processed, you can perform grammatical correctness checking. This task should be considered as a simple binary text classification, where the model gets input text and predicts label 1 if a text contains any grammatical errors and 0 if it does not. You will use the [roberta-base-CoLA](https://huggingface.co/textattack/roberta-base-CoLA) model, the RoBERTa Base model finetuned on the CoLA dataset. The RoBERTa model was proposed in [RoBERTa: A Robustly Optimized BERT Pretraining Approach paper](https://arxiv.org/abs/1907.11692). It builds on BERT and modifies key hyperparameters, removing the next-sentence pre-training objective and training with much larger mini-batches and learning rates. Additional details about the model can be found in a [blog post](https://ai.facebook.com/blog/roberta-an-optimized-method-for-pretraining-self-supervised-nlp-systems/) by Meta AI and in the [Hugging Face documentation](https://huggingface.co/docs/transformers/model_doc/roberta)\n",
"\n",
"Now that we know more about FLAN-T5 and RoBERTa, let us get started. π"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "ed9a760a-aaf7-41f6-ab0d-da993e486336",
"metadata": {},
"source": [
"## Prerequisites\n",
"[back to top β¬οΈ](#Table-of-contents:)\n",
"\n",
"First, we need to install the [Hugging Face Optimum](https://huggingface.co/docs/transformers/index) library accelerated by OpenVINO integration.\n",
"The Hugging Face Optimum API is a high-level API that enables us to convert and quantize models from the Hugging Face Transformers library to the OpenVINOβ’ IR format. For more details, refer to the [Hugging Face Optimum documentation](https://huggingface.co/docs/optimum/intel/inference)."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "2974cad4-bd3f-4552-82ac-ebd21bf75d9d",
"metadata": {
"ExecuteTime": {
"end_time": "2023-09-27T12:36:41.250268200Z",
"start_time": "2023-09-27T12:36:41.126825900Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n",
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install -q \"torch>=2.1.0\" \"git+https://github.com/huggingface/optimum-intel.git\" \"openvino>=2024.0.0\" onnx tqdm \"gradio>=4.19\" \"transformers>=4.33.0\" --extra-index-url https://download.pytorch.org/whl/cpu\n",
"%pip install -q \"nncf>=2.9.0\" datasets jiwer"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "c13b157a-2bbb-49db-9046-47c2b6ba2953",
"metadata": {},
"source": [
"## Download and Convert Models\n",
"[back to top β¬οΈ](#Table-of-contents:)\n",
"\n",
"Optimum Intel can be used to load optimized models from the [Hugging Face Hub](https://huggingface.co/docs/optimum/intel/hf.co/models) and create pipelines to run an inference with OpenVINO Runtime using Hugging Face APIs. The Optimum Inference models are API compatible with Hugging Face Transformers models. This means we just need to replace `AutoModelForXxx` class with the corresponding `OVModelForXxx` class.\n",
"\n",
"Below is an example of the RoBERTa text classification model\n",
"\n",
"```diff\n",
"-from transformers import AutoModelForSequenceClassification\n",
"+from optimum.intel.openvino import OVModelForSequenceClassification\n",
"from transformers import AutoTokenizer, pipeline\n",
"\n",
"model_id = \"textattack/roberta-base-CoLA\"\n",
"-model = AutoModelForSequenceClassification.from_pretrained(model_id)\n",
"+model = OVModelForSequenceClassification.from_pretrained(model_id, from_transformers=True)\n",
"```\n",
"\n",
"Model class initialization starts with calling `from_pretrained` method. When downloading and converting Transformers model, the parameter `from_transformers=True` should be added. We can save the converted model for the next usage with the `save_pretrained` method.\n",
"Tokenizer class and pipelines API are compatible with Optimum models."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "b99c7c6c-256d-43ae-9b8b-fc1d4f501e06",
"metadata": {
"ExecuteTime": {
"end_time": "2023-09-27T12:36:45.293606200Z",
"start_time": "2023-09-27T12:36:41.140617200Z"
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2024-03-25 11:56:04.043628: I tensorflow/core/util/port.cc:111] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
"2024-03-25 11:56:04.045940: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.\n",
"2024-03-25 11:56:04.079112: E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:9342] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
"2024-03-25 11:56:04.079147: E tensorflow/compiler/xla/stream_executor/cuda/cuda_fft.cc:609] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
"2024-03-25 11:56:04.079167: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:1518] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
"2024-03-25 11:56:04.085243: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.\n",
"2024-03-25 11:56:04.085971: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
"To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
"2024-03-25 11:56:05.314633: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:nncf:NNCF initialized successfully. Supported frameworks detected: torch, tensorflow, onnx, openvino\n"
]
}
],
"source": [
"from pathlib import Path\n",
"from transformers import pipeline, AutoTokenizer\n",
"from optimum.intel.openvino import OVModelForSeq2SeqLM, OVModelForSequenceClassification"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "833e0871-c828-4104-a986-230a27c913a5",
"metadata": {},
"source": [
"### Select inference device\n",
"[back to top β¬οΈ](#Table-of-contents:)\n",
"\n",
"select device from dropdown list for running inference using OpenVINO"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "053b4f68-a329-43ac-920c-9d86949edc05",
"metadata": {
"ExecuteTime": {
"end_time": "2023-09-27T12:36:45.365875Z",
"start_time": "2023-09-27T12:36:45.358347Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "42061109f15641afbc97b6ec04d77682",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Dropdown(description='Device:', index=3, options=('CPU', 'GPU.0', 'GPU.1', 'AUTO'), value='AUTO')"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import ipywidgets as widgets\n",
"import openvino as ov\n",
"\n",
"core = ov.Core()\n",
"\n",
"device = widgets.Dropdown(\n",
" options=core.available_devices + [\"AUTO\"],\n",
" value=\"AUTO\",\n",
" description=\"Device:\",\n",
" disabled=False,\n",
")\n",
"\n",
"device"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "6131a0ec-654e-435e-a668-55ad33cff74b",
"metadata": {},
"source": [
"### Grammar Checker\n",
"[back to top β¬οΈ](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "47af0ecf-99ff-4852-bfaa-6692caeaca21",
"metadata": {
"ExecuteTime": {
"end_time": "2023-09-27T12:36:46.565522500Z",
"start_time": "2023-09-27T12:36:45.374663900Z"
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Framework not specified. Using pt to export the model.\n",
"Some weights of the model checkpoint at textattack/roberta-base-CoLA were not used when initializing RobertaForSequenceClassification: ['roberta.pooler.dense.bias', 'roberta.pooler.dense.weight']\n",
"- This IS expected if you are initializing RobertaForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
"- This IS NOT expected if you are initializing RobertaForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
"Using the export variant default. Available variants are:\n",
" - default: The default ONNX variant.\n",
"Using framework PyTorch: 2.2.1+cpu\n",
"Overriding 1 configuration item(s)\n",
"\t- use_cache -> False\n",
"/home/ea/miniconda3/lib/python3.11/site-packages/transformers/modeling_utils.py:4225: FutureWarning: `_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead\n",
" warnings.warn(\n",
"Compiling the model to AUTO ...\n"
]
}
],
"source": [
"grammar_checker_model_id = \"textattack/roberta-base-CoLA\"\n",
"grammar_checker_dir = Path(\"roberta-base-cola\")\n",
"grammar_checker_tokenizer = AutoTokenizer.from_pretrained(grammar_checker_model_id)\n",
"\n",
"if grammar_checker_dir.exists():\n",
" grammar_checker_model = OVModelForSequenceClassification.from_pretrained(grammar_checker_dir, device=device.value)\n",
"else:\n",
" grammar_checker_model = OVModelForSequenceClassification.from_pretrained(grammar_checker_model_id, export=True, device=device.value, load_in_8bit=False)\n",
" grammar_checker_model.save_pretrained(grammar_checker_dir)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "482a5d75-916a-4363-bf24-5b642a6bf437",
"metadata": {},
"source": [
"Let us check model work, using inference pipeline for `text-classification` task. You can find more information about usage Hugging Face inference pipelines in this [tutorial](https://huggingface.co/docs/transformers/pipeline_tutorial)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "90e48d59-9eea-4962-ac9a-fc9a6330b406",
"metadata": {
"ExecuteTime": {
"end_time": "2023-09-27T12:36:46.609135600Z",
"start_time": "2023-09-27T12:36:46.570867800Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"input text: They are moved by salar energy\n",
"predicted label: contains_errors\n",
"predicted score: 0.88\n"
]
}
],
"source": [
"input_text = \"They are moved by salar energy\"\n",
"grammar_checker_pipe = pipeline(\n",
" \"text-classification\",\n",
" model=grammar_checker_model,\n",
" tokenizer=grammar_checker_tokenizer,\n",
")\n",
"result = grammar_checker_pipe(input_text)[0]\n",
"print(f\"input text: {input_text}\")\n",
"print(f'predicted label: {\"contains_errors\" if result[\"label\"] == \"LABEL_1\" else \"no errors\"}')\n",
"print(f'predicted score: {result[\"score\"] :.2}')"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "5c4e358c-bbf8-4ea8-9b19-d8616c41562d",
"metadata": {},
"source": [
"Great! Looks like the model can detect errors in the sample."
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "cdba3c17-9f94-4d1c-afae-39c857caf5af",
"metadata": {},
"source": [
"### Grammar Corrector\n",
"[back to top β¬οΈ](#Table-of-contents:)\n",
"\n",
"The steps for loading the Grammar Corrector model are very similar, except for the model class that is used. Because FLAN-T5 is a sequence-to-sequence text generation model, we should use the `OVModelForSeq2SeqLM` class and the `text2text-generation` pipeline to run it."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "a4771627-a3d1-4023-a016-c668ec079f34",
"metadata": {
"ExecuteTime": {
"end_time": "2023-09-27T12:36:54.537211100Z",
"start_time": "2023-09-27T12:36:46.613175900Z"
},
"test_replace": {
"flan-t5-large-grammar-synthesis": "grammar-synthesis-small"
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Framework not specified. Using pt to export the model.\n",
"Using the export variant default. Available variants are:\n",
" - default: The default ONNX variant.\n",
"Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n",
"Non-default generation parameters: {'max_length': 512, 'min_length': 8, 'num_beams': 2, 'no_repeat_ngram_size': 4}\n",
"Using framework PyTorch: 2.2.1+cpu\n",
"Overriding 1 configuration item(s)\n",
"\t- use_cache -> False\n",
"/home/ea/miniconda3/lib/python3.11/site-packages/transformers/modeling_utils.py:4225: FutureWarning: `_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead\n",
" warnings.warn(\n",
"Using framework PyTorch: 2.2.1+cpu\n",
"Overriding 1 configuration item(s)\n",
"\t- use_cache -> True\n",
"/home/ea/miniconda3/lib/python3.11/site-packages/transformers/modeling_utils.py:943: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
" if causal_mask.shape[1] < attention_mask.shape[1]:\n",
"Using framework PyTorch: 2.2.1+cpu\n",
"Overriding 1 configuration item(s)\n",
"\t- use_cache -> True\n",
"/home/ea/miniconda3/lib/python3.11/site-packages/transformers/models/t5/modeling_t5.py:509: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
" elif past_key_value.shape[2] != key_value_states.shape[1]:\n",
"Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n",
"Non-default generation parameters: {'max_length': 512, 'min_length': 8, 'num_beams': 2, 'no_repeat_ngram_size': 4}\n",
"Compiling the encoder to AUTO ...\n",
"Compiling the decoder to AUTO ...\n",
"Compiling the decoder to AUTO ...\n",
"Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.\n",
"Non-default generation parameters: {'max_length': 512, 'min_length': 8, 'num_beams': 2, 'no_repeat_ngram_size': 4}\n"
]
}
],
"source": [
"grammar_corrector_model_id = \"pszemraj/flan-t5-large-grammar-synthesis\"\n",
"grammar_corrector_dir = Path(\"flan-t5-large-grammar-synthesis\")\n",
"grammar_corrector_tokenizer = AutoTokenizer.from_pretrained(grammar_corrector_model_id)\n",
"\n",
"if grammar_corrector_dir.exists():\n",
" grammar_corrector_model = OVModelForSeq2SeqLM.from_pretrained(grammar_corrector_dir, device=device.value)\n",
"else:\n",
" grammar_corrector_model = OVModelForSeq2SeqLM.from_pretrained(grammar_corrector_model_id, export=True, device=device.value)\n",
" grammar_corrector_model.save_pretrained(grammar_corrector_dir)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "cf3d0d24-c94a-42c7-b603-499bd9d251d6",
"metadata": {
"ExecuteTime": {
"end_time": "2023-09-27T12:36:54.543943100Z",
"start_time": "2023-09-27T12:36:54.543943100Z"
}
},
"outputs": [],
"source": [
"grammar_corrector_pipe = pipeline(\n",
" \"text2text-generation\",\n",
" model=grammar_corrector_model,\n",
" tokenizer=grammar_corrector_tokenizer,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "4bdf3a9d-1b4d-415f-8e7a-6be89f700898",
"metadata": {
"ExecuteTime": {
"end_time": "2023-09-27T12:36:55.348843Z",
"start_time": "2023-09-27T12:36:54.544960300Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"input text: They are moved by salar energy\n",
"generated text: They are powered by solar energy.\n"
]
}
],
"source": [
"result = grammar_corrector_pipe(input_text)[0]\n",
"print(f\"input text: {input_text}\")\n",
"print(f'generated text: {result[\"generated_text\"]}')"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "992cb162-efd3-49da-99c5-0c44af34afaf",
"metadata": {},
"source": [
"Nice! The result looks pretty good!"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "69faa673-45fd-481d-9573-4f54ea17fb77",
"metadata": {},
"source": [
"## Prepare Demo Pipeline\n",
"[back to top β¬οΈ](#Table-of-contents:)\n",
"\n",
"Now let us put everything together and create the pipeline for grammar correction.\n",
"The pipeline accepts input text, verifies its correctness, and generates the correct version if required. It will consist of several steps:\n",
"\n",
"1. Split text on sentences.\n",
"2. Check grammatical correctness for each sentence using Grammar Checker.\n",
"3. Generate an improved version of the sentence if required."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "15edc678-6bf7-4241-a230-5de5dd251d5b",
"metadata": {
"ExecuteTime": {
"end_time": "2023-09-27T12:36:55.353403100Z",
"start_time": "2023-09-27T12:36:55.350607600Z"
}
},
"outputs": [],
"source": [
"import re\n",
"import transformers\n",
"from tqdm.notebook import tqdm\n",
"\n",
"\n",
"def split_text(text: str) -> list:\n",
" \"\"\"\n",
" Split a string of text into a list of sentence batches.\n",
"\n",
" Parameters:\n",
" text (str): The text to be split into sentence batches.\n",
"\n",
" Returns:\n",
" list: A list of sentence batches. Each sentence batch is a list of sentences.\n",
" \"\"\"\n",
" # Split the text into sentences using regex\n",
" sentences = re.split(r\"(?<=[^A-Z].[.?]) +(?=[A-Z])\", text)\n",
"\n",
" # Initialize a list to store the sentence batches\n",
" sentence_batches = []\n",
"\n",
" # Initialize a temporary list to store the current batch of sentences\n",
" temp_batch = []\n",
"\n",
" # Iterate through the sentences\n",
" for sentence in sentences:\n",
" # Add the sentence to the temporary batch\n",
" temp_batch.append(sentence)\n",
"\n",
" # If the length of the temporary batch is between 2 and 3 sentences, or if it is the last batch, add it to the list of sentence batches\n",
" if len(temp_batch) >= 2 and len(temp_batch) <= 3 or sentence == sentences[-1]:\n",
" sentence_batches.append(temp_batch)\n",
" temp_batch = []\n",
"\n",
" return sentence_batches\n",
"\n",
"\n",
"def correct_text(\n",
" text: str,\n",
" checker: transformers.pipelines.Pipeline,\n",
" corrector: transformers.pipelines.Pipeline,\n",
" separator: str = \" \",\n",
") -> str:\n",
" \"\"\"\n",
" Correct the grammar in a string of text using a text-classification and text-generation pipeline.\n",
"\n",
" Parameters:\n",
" text (str): The inpur text to be corrected.\n",
" checker (transformers.pipelines.Pipeline): The text-classification pipeline to use for checking the grammar quality of the text.\n",
" corrector (transformers.pipelines.Pipeline): The text-generation pipeline to use for correcting the text.\n",
" separator (str, optional): The separator to use when joining the corrected text into a single string. Default is a space character.\n",
"\n",
" Returns:\n",
" str: The corrected text.\n",
" \"\"\"\n",
" # Split the text into sentence batches\n",
" sentence_batches = split_text(text)\n",
"\n",
" # Initialize a list to store the corrected text\n",
" corrected_text = []\n",
"\n",
" # Iterate through the sentence batches\n",
" for batch in tqdm(sentence_batches, total=len(sentence_batches), desc=\"correcting text..\"):\n",
" # Join the sentences in the batch into a single string\n",
" raw_text = \" \".join(batch)\n",
"\n",
" # Check the grammar quality of the text using the text-classification pipeline\n",
" results = checker(raw_text)\n",
"\n",
" # Only correct the text if the results of the text-classification are not LABEL_1 or are LABEL_1 with a score below 0.9\n",
" if results[0][\"label\"] != \"LABEL_1\" or (results[0][\"label\"] == \"LABEL_1\" and results[0][\"score\"] < 0.9):\n",
" # Correct the text using the text-generation pipeline\n",
" corrected_batch = corrector(raw_text)\n",
" corrected_text.append(corrected_batch[0][\"generated_text\"])\n",
" else:\n",
" corrected_text.append(raw_text)\n",
"\n",
" # Join the corrected text into a single string\n",
" corrected_text = separator.join(corrected_text)\n",
"\n",
" return corrected_text"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "26d3d759-3cb2-418d-82f8-3be2e445916a",
"metadata": {},
"source": [
"Let us see it in action."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "aee397f5-12cb-460b-8824-327f19af8e5f",
"metadata": {
"ExecuteTime": {
"end_time": "2023-09-27T12:36:59.264642800Z",
"start_time": "2023-09-27T12:36:55.360645Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fad1db66c31644c0a9e9ed1db7a749fb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"correcting text..: 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"default_text = (\n",
" \"Most of the course is about semantic or content of language but there are also interesting\"\n",
" \" topics to be learned from the servicefeatures except statistics in characters in documents.At\"\n",
" \" this point, He introduces herself as his native English speaker and goes on to say that if\"\n",
" \" you contine to work on social scnce\"\n",
")\n",
"\n",
"corrected_text = correct_text(default_text, grammar_checker_pipe, grammar_corrector_pipe)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "5862ec36-8d77-418f-9295-5dc644b50068",
"metadata": {
"ExecuteTime": {
"end_time": "2023-09-27T12:36:59.316574700Z",
"start_time": "2023-09-27T12:36:59.263138800Z"
},
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"input text: Most of the course is about semantic or content of language but there are also interesting topics to be learned from the servicefeatures except statistics in characters in documents.At this point, He introduces herself as his native English speaker and goes on to say that if you contine to work on social scnce\n",
"\n",
"generated text: Most of the course is about the semantic content of language but there are also interesting topics to be learned from the service features except statistics in characters in documents. At this point, she introduces herself as a native English speaker and goes on to say that if you continue to work on social science, you will continue to be successful.\n"
]
}
],
"source": [
"print(f\"input text: {default_text}\\n\")\n",
"print(f\"generated text: {corrected_text}\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "21c60879",
"metadata": {
"jupyter": {
"outputs_hidden": false
}
},
"source": [
"## Quantization\n",
"[back to top β¬οΈ](#Table-of-contents:)\n",
"\n",
"[NNCF](https://github.com/openvinotoolkit/nncf/) enables post-training quantization by adding quantization layers into model graph and then using a subset of the training dataset to initialize the parameters of these additional quantization layers. Quantized operations are executed in `INT8` instead of `FP32`/`FP16` making model inference faster.\n",
"\n",
"Grammar checker model takes up a tiny portion of the whole text correction pipeline so we optimize only the grammar corrector model. Grammar corrector itself consists of three models: encoder, first call decoder and decoder with past. The last model's share of inference dominates the other ones. Because of this we quantize only it.\n",
"\n",
"The optimization process contains the following steps:\n",
"\n",
"1. Create a calibration dataset for quantization.\n",
"2. Run `nncf.quantize()` to obtain quantized models.\n",
"3. Serialize the `INT8` model using `openvino.save_model()` function."
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "f87e8395",
"metadata": {
"jupyter": {
"outputs_hidden": false
}
},
"source": [
"Please select below whether you would like to run quantization to improve model inference speed."
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "cbedc1a5",
"metadata": {
"ExecuteTime": {
"end_time": "2023-09-27T12:36:59.316574700Z",
"start_time": "2023-09-27T12:36:59.306224100Z"
},
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "be9c720d620744c88255ffd47c0f7663",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Checkbox(value=True, description='Quantization')"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"to_quantize = widgets.Checkbox(\n",
" value=True,\n",
" description=\"Quantization\",\n",
" disabled=False,\n",
")\n",
"\n",
"to_quantize"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "b2b35b38",
"metadata": {
"jupyter": {
"outputs_hidden": false
}
},
"source": [
"### Run Quantization\n",
"[back to top β¬οΈ](#Table-of-contents:)\n",
"\n",
"Below we retrieve the quantized model. Please see `utils.py` for source code. Quantization is relatively time-consuming and will take some time to complete."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "b1e36c1e",
"metadata": {
"ExecuteTime": {
"end_time": "2023-09-27T12:37:08.158695900Z",
"start_time": "2023-09-27T12:36:59.307312900Z"
},
"collapsed": false,
"jupyter": {
"outputs_hidden": false
},
"test_replace": {
"calibration_dataset_size=CALIBRATION_DATASET_SIZE,": "calibration_dataset_size=1,"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3f8e1722e24043cd9aec9a2e214aeac6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading readme: 0%| | 0.00/5.94k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Downloading data: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 148k/148k [00:01<00:00, 79.1kB/s]\n",
"Downloading data: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 141k/141k [00:01<00:00, 131kB/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f243e883be084cfbad2b46403f25d9e4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Generating validation split: 0%| | 0/755 [00:00<?, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f79e153f02c747b2a5559d872acdf098",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Generating test split: 0%| | 0/748 [00:00<?, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a39ea77517a34a54878f18b053cb053f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Collecting calibration data: 0%| | 0/10 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c04a10727b0943f1b2e24d51948a7a1f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
"</pre>\n"
],
"text/plain": [
"\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "14ab11fb72da401cbe101525c1d3b258",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
"</pre>\n"
],
"text/plain": [
"\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:nncf:72 ignored nodes were found by name in the NNCFGraph\n",
"INFO:nncf:145 ignored nodes were found by name in the NNCFGraph\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8e2cd1c1802044c0ba402a1ef6e6862a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
"</pre>\n"
],
"text/plain": [
"\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Compiling the encoder to AUTO ...\n",
"Compiling the decoder to AUTO ...\n",
"Compiling the decoder to AUTO ...\n",
"Compiling the decoder to AUTO ...\n"
]
}
],
"source": [
"from utils import get_quantized_pipeline, CALIBRATION_DATASET_SIZE\n",
"\n",
"grammar_corrector_pipe_fp32 = grammar_corrector_pipe\n",
"grammar_corrector_pipe_int8 = None\n",
"if to_quantize.value:\n",
" quantized_model_path = Path(\"quantized_decoder_with_past\") / \"openvino_model.xml\"\n",
" grammar_corrector_pipe_int8 = get_quantized_pipeline(\n",
" grammar_corrector_pipe_fp32,\n",
" grammar_corrector_tokenizer,\n",
" core,\n",
" grammar_corrector_dir,\n",
" quantized_model_path,\n",
" device.value,\n",
" calibration_dataset_size=CALIBRATION_DATASET_SIZE,\n",
" )"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "50123853-f621-4cab-b836-b8f210d03c04",
"metadata": {},
"source": [
"Let's see correction results. The generated texts for quantized INT8 model and original FP32 model should be almost the same."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "86d39904-21a8-4125-bb1d-1785aaadd85a",
"metadata": {
"ExecuteTime": {
"end_time": "2023-09-27T12:37:11.035199500Z",
"start_time": "2023-09-27T12:37:08.172901100Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "216c8924e3b34353a042836cf0b58545",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"correcting text..: 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Input text: Most of the course is about semantic or content of language but there are also interesting topics to be learned from the servicefeatures except statistics in characters in documents.At this point, He introduces herself as his native English speaker and goes on to say that if you contine to work on social scnce\n",
"\n",
"Generated text by INT8 model: Most of the course is about semantics or content of language but there are also interesting topics to be learned from the service features except statistics in characters in documents. At this point, she introduces himself as a native English speaker and goes on to say that if you continue to work on social science, you will continue to do so.\n"
]
}
],
"source": [
"if to_quantize.value:\n",
" corrected_text_int8 = correct_text(default_text, grammar_checker_pipe, grammar_corrector_pipe_int8)\n",
" print(f\"Input text: {default_text}\\n\")\n",
" print(f\"Generated text by INT8 model: {corrected_text_int8}\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "176da8b1",
"metadata": {
"jupyter": {
"outputs_hidden": false
}
},
"source": [
"### Compare model size, performance and accuracy\n",
"[back to top β¬οΈ](#Table-of-contents:)\n",
"\n",
"First, we compare file size of `FP32` and `INT8` models."
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "e8277b8b",
"metadata": {
"ExecuteTime": {
"end_time": "2023-09-27T12:37:11.039089700Z",
"start_time": "2023-09-27T12:37:11.038799100Z"
},
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model footprint comparison:\n",
" * FP32 IR model size: 1658150.25 KB\n",
" * INT8 IR model size: 415711.39 KB\n"
]
}
],
"source": [
"from utils import calculate_compression_rate\n",
"\n",
"if to_quantize.value:\n",
" model_size_fp32, model_size_int8 = calculate_compression_rate(\n",
" grammar_corrector_dir / \"openvino_decoder_with_past_model.xml\",\n",
" quantized_model_path,\n",
" )"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "82d69626",
"metadata": {
"jupyter": {
"outputs_hidden": false
}
},
"source": [
"Second, we compare two grammar correction pipelines from performance and accuracy stand points.\n",
"\n",
"Test split of <spell>[jfleg](https://huggingface.co/datasets/jfleg)<spell> dataset is used for testing. One dataset sample consists of a text with errors as input and several corrected versions as labels. When measuring accuracy we use mean `(1 - WER)` against corrected text versions, where WER is Word Error Rate metric."
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "cb0b9c11",
"metadata": {
"ExecuteTime": {
"end_time": "2023-09-27T12:38:57.419098800Z",
"start_time": "2023-09-27T12:37:11.051448Z"
},
"collapsed": false,
"jupyter": {
"outputs_hidden": false
},
"test_replace": {
"TEST_SUBSET_SIZE = 50": "TEST_SUBSET_SIZE = 1"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "53e9a050fd464d589fb7f333bbf4525a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Evaluation: 0%| | 0/50 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Evaluation results of FP32 grammar correction pipeline. Accuracy: 58.04%. Time: 62.44 sec.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0dbda2d36b974f029242705295a099a0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Evaluation: 0%| | 0/50 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Evaluation results of INT8 grammar correction pipeline. Accuracy: 59.04%. Time: 40.32 sec.\n",
"Performance speedup: 1.549\n",
"Accuracy drop :-0.99%.\n",
"Model footprint reduction: 3.989\n"
]
}
],
"source": [
"from utils import calculate_inference_time_and_accuracy\n",
"\n",
"TEST_SUBSET_SIZE = 50\n",
"\n",
"if to_quantize.value:\n",
" inference_time_fp32, accuracy_fp32 = calculate_inference_time_and_accuracy(grammar_corrector_pipe_fp32, TEST_SUBSET_SIZE)\n",
" print(f\"Evaluation results of FP32 grammar correction pipeline. Accuracy: {accuracy_fp32:.2f}%. Time: {inference_time_fp32:.2f} sec.\")\n",
" inference_time_int8, accuracy_int8 = calculate_inference_time_and_accuracy(grammar_corrector_pipe_int8, TEST_SUBSET_SIZE)\n",
" print(f\"Evaluation results of INT8 grammar correction pipeline. Accuracy: {accuracy_int8:.2f}%. Time: {inference_time_int8:.2f} sec.\")\n",
" print(f\"Performance speedup: {inference_time_fp32 / inference_time_int8:.3f}\")\n",
" print(f\"Accuracy drop :{accuracy_fp32 - accuracy_int8:.2f}%.\")\n",
" print(f\"Model footprint reduction: {model_size_fp32 / model_size_int8:.3f}\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "3dedfe26-143d-427d-9a6b-affc265a236b",
"metadata": {},
"source": [
"## Interactive demo\n",
"[back to top β¬οΈ](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "07364823-62cf-475e-84b7-f3d56aeb91c7",
"metadata": {
"ExecuteTime": {
"start_time": "2023-09-27T12:39:57.119583500Z"
},
"is_executing": true,
"test_replace": {
" demo.queue().launch(debug=True)": " demo.queue().launch()",
" demo.queue().launch(share=True, debug=True)": " demo.queue().launch(share=True)"
}
},
"outputs": [],
"source": [
"import gradio as gr\n",
"import time\n",
"\n",
"\n",
"def correct(text, quantized, progress=gr.Progress(track_tqdm=True)):\n",
" grammar_corrector = grammar_corrector_pipe_int8 if quantized else grammar_corrector_pipe\n",
"\n",
" start_time = time.perf_counter()\n",
" corrected_text = correct_text(text, grammar_checker_pipe, grammar_corrector)\n",
" end_time = time.perf_counter()\n",
"\n",
" return corrected_text, f\"{end_time - start_time:.2f}\"\n",
"\n",
"\n",
"def create_demo_block(quantized: bool, show_model_type: bool):\n",
" model_type = (\" optimized\" if quantized else \" original\") if show_model_type else \"\"\n",
" with gr.Row():\n",
" gr.Markdown(f\"## Run{model_type} grammar correction pipeline\")\n",
" with gr.Row():\n",
" with gr.Column():\n",
" input_text = gr.Textbox(label=\"Text\")\n",
" with gr.Column():\n",
" output_text = gr.Textbox(label=\"Correction\")\n",
" correction_time = gr.Textbox(label=\"Time (seconds)\")\n",
" with gr.Row():\n",
" gr.Examples(examples=[default_text], inputs=[input_text])\n",
" with gr.Row():\n",
" button = gr.Button(f\"Run{model_type}\")\n",
" button.click(\n",
" correct,\n",
" inputs=[input_text, gr.Number(quantized, visible=False)],\n",
" outputs=[output_text, correction_time],\n",
" )\n",
"\n",
"\n",
"with gr.Blocks() as demo:\n",
" gr.Markdown(\"# Interactive demo\")\n",
" quantization_is_present = grammar_corrector_pipe_int8 is not None\n",
" create_demo_block(quantized=False, show_model_type=quantization_is_present)\n",
" if quantization_is_present:\n",
" create_demo_block(quantized=True, show_model_type=True)\n",
"\n",
"\n",
"# if you are launching remotely, specify server_name and server_port\n",
"# demo.launch(server_name='your server name', server_port='server port in int')\n",
"# Read more in the docs: https://gradio.app/docs/\n",
"try:\n",
" demo.queue().launch(debug=True)\n",
"except Exception:\n",
" demo.queue().launch(share=True, debug=True)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
},
"openvino_notebooks": {
"imageUrl": "https://cdn-images-1.medium.com/max/540/1*Voez5hEn5MU8Knde3fIZfw.png",
"tags": {
"categories": [
"Model Demos"
],
"libraries": [],
"other": [],
"tasks": [
"Text Classification",
"Error Correction"
]
}
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|