Spaces:
Runtime error
Runtime error
File size: 13,942 Bytes
db5855f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "e2b748f3",
"metadata": {},
"source": [
"# Sentiment Analysis with OpenVINO™\n",
"\n",
"**Sentiment analysis** is the use of natural language processing, text analysis, computational linguistics, and biometrics to systematically identify, extract, quantify, and study affective states and subjective information. This notebook demonstrates how to convert and run a sequence classification model using OpenVINO. \n",
"\n",
"\n",
"#### Table of contents:\n",
"\n",
"- [Imports](#Imports)\n",
"- [Initializing the Model](#Initializing-the-Model)\n",
"- [Initializing the Tokenizer](#Initializing-the-Tokenizer)\n",
"- [Convert Model to OpenVINO Intermediate Representation format](#Convert-Model-to-OpenVINO-Intermediate-Representation-format)\n",
" - [Select inference device](#Select-inference-device)\n",
"- [Inference](#Inference)\n",
" - [For a single input sentence](#For-a-single-input-sentence)\n",
" - [Read from a text file](#Read-from-a-text-file)\n",
"\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "abc41ac0",
"metadata": {},
"source": [
"## Imports\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ba2626e0",
"metadata": {},
"outputs": [],
"source": [
"%pip install \"openvino>=2023.1.0\" transformers \"torch>=2.1\" tqdm --extra-index-url https://download.pytorch.org/whl/cpu"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "fe80a355",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import warnings\n",
"from pathlib import Path\n",
"import time\n",
"from transformers import AutoModelForSequenceClassification, AutoTokenizer\n",
"import numpy as np\n",
"import openvino as ov"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "36add5c2",
"metadata": {},
"source": [
"## Initializing the Model\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"We will use the transformer-based [DistilBERT base uncased finetuned SST-2](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) model from Hugging Face."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "5db803ea",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"checkpoint = \"distilbert-base-uncased-finetuned-sst-2-english\"\n",
"model = AutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path=checkpoint)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "ae70bbf5",
"metadata": {},
"source": [
"## Initializing the Tokenizer\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Text Preprocessing cleans the text-based input data so it can be fed into the model. [Tokenization](https://towardsdatascience.com/tokenization-for-natural-language-processing-a179a891bad4) splits paragraphs and sentences into smaller units that can be more easily assigned meaning. It involves cleaning the data and assigning tokens or IDs to the words, so they are represented in a vector space where similar words have similar vectors. This helps the model understand the context of a sentence. Here, we will use [`AutoTokenizer`](https://huggingface.co/docs/transformers/main_classes/tokenizer) - a pre-trained tokenizer from Hugging Face:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "782bbebf",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=checkpoint)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "4b00e300",
"metadata": {},
"source": [
"## Convert Model to OpenVINO Intermediate Representation format\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"[Model conversion API](https://docs.openvino.ai/2024/openvino-workflow/model-preparation.html) facilitates the transition between training and deployment environments, performs static model analysis, and adjusts deep learning models for optimal execution on end-point target devices."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "4794f066",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import torch\n",
"\n",
"ir_xml_name = checkpoint + \".xml\"\n",
"MODEL_DIR = \"model/\"\n",
"ir_xml_path = Path(MODEL_DIR) / ir_xml_name\n",
"\n",
"MAX_SEQ_LENGTH = 128\n",
"input_info = [\n",
" (ov.PartialShape([1, -1]), ov.Type.i64),\n",
" (ov.PartialShape([1, -1]), ov.Type.i64),\n",
"]\n",
"default_input = torch.ones(1, MAX_SEQ_LENGTH, dtype=torch.int64)\n",
"inputs = {\n",
" \"input_ids\": default_input,\n",
" \"attention_mask\": default_input,\n",
"}\n",
"\n",
"ov_model = ov.convert_model(model, input=input_info, example_input=inputs)\n",
"ov.save_model(ov_model, ir_xml_path)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "27cc074e",
"metadata": {},
"source": [
"OpenVINO™ Runtime uses the [Infer Request](https://docs.openvino.ai/2024/openvino-workflow/running-inference/integrate-openvino-with-your-application/inference-request.html) mechanism which enables running models on different devices in asynchronous or synchronous manners. The model graph is sent as an argument to the OpenVINO API and an inference request is created. The default inference mode is AUTO but it can be changed according to requirements and hardware available. You can explore the different inference modes and their usage [in documentation.](https://docs.openvino.ai/2024/openvino-workflow/running-inference/inference-devices-and-modes.html)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "39248a56-11b3-42cc-bf5f-de05e1732c77",
"metadata": {},
"outputs": [],
"source": [
"core = ov.Core()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "74daf538-ac4d-4fb8-a069-db3af4cf40ea",
"metadata": {},
"source": [
"### Select inference device\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"select device from dropdown list for running inference using OpenVINO"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "1e27ef1d-e91e-4cbe-8a86-457ddeb0a1c7",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3d4bb3500d474fbcb4d52449d22df756",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Dropdown(description='Device:', index=2, options=('CPU', 'GPU', 'AUTO'), value='AUTO')"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import ipywidgets as widgets\n",
"\n",
"device = widgets.Dropdown(\n",
" options=core.available_devices + [\"AUTO\"],\n",
" value=\"AUTO\",\n",
" description=\"Device:\",\n",
" disabled=False,\n",
")\n",
"\n",
"device"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "e31a2644",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"warnings.filterwarnings(\"ignore\")\n",
"compiled_model = core.compile_model(ov_model, device.value)\n",
"infer_request = compiled_model.create_infer_request()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "de01fccc",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"def softmax(x):\n",
" \"\"\"\n",
" Defining a softmax function to extract\n",
" the prediction from the output of the IR format\n",
" Parameters: Logits array\n",
" Returns: Probabilities\n",
" \"\"\"\n",
"\n",
" e_x = np.exp(x - np.max(x))\n",
" return e_x / e_x.sum()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "2e778507",
"metadata": {},
"source": [
"## Inference\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "cc0c91a6",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"def infer(input_text):\n",
" \"\"\"\n",
" Creating a generic inference function\n",
" to read the input and infer the result\n",
" into 2 classes: Positive or Negative.\n",
" Parameters: Text to be processed\n",
" Returns: Label: Positive or Negative.\n",
" \"\"\"\n",
"\n",
" input_text = tokenizer(\n",
" input_text,\n",
" truncation=True,\n",
" return_tensors=\"np\",\n",
" )\n",
" inputs = dict(input_text)\n",
" label = {0: \"NEGATIVE\", 1: \"POSITIVE\"}\n",
" result = infer_request.infer(inputs=inputs)\n",
" for i in result.values():\n",
" probability = np.argmax(softmax(i))\n",
" return label[probability]"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "b60e79fd",
"metadata": {},
"source": [
"### For a single input sentence\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "cf976f71",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Label: POSITIVE\n",
"Total Time: 0.02 seconds\n"
]
}
],
"source": [
"input_text = \"I had a wonderful day\"\n",
"start_time = time.perf_counter()\n",
"result = infer(input_text)\n",
"end_time = time.perf_counter()\n",
"total_time = end_time - start_time\n",
"print(\"Label: \", result)\n",
"print(\"Total Time: \", \"%.2f\" % total_time, \" seconds\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "29b4d013",
"metadata": {},
"source": [
"### Read from a text file\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5c267032",
"metadata": {},
"outputs": [],
"source": [
"# Fetch `notebook_utils` module\n",
"import requests\n",
"\n",
"r = requests.get(\n",
" url=\"https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py\",\n",
")\n",
"\n",
"open(\"notebook_utils.py\", \"w\").write(r.text)\n",
"from notebook_utils import download_file\n",
"\n",
"# Download the text from the openvino_notebooks storage\n",
"vocab_file_path = download_file(\n",
" \"https://storage.openvinotoolkit.org/repositories/openvino_notebooks/data/data/text/food_reviews.txt\",\n",
" directory=\"data\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "63f57d28",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"User Input: The food was horrible.\n",
"\n",
"Label: NEGATIVE \n",
"\n",
"User Input: We went because the restaurant had good reviews.\n",
"Label: POSITIVE \n",
"\n",
"Total Time: 0.01 seconds\n"
]
}
],
"source": [
"start_time = time.perf_counter()\n",
"with vocab_file_path.open(mode=\"r\") as f:\n",
" input_text = f.readlines()\n",
" for lines in input_text:\n",
" print(\"User Input: \", lines)\n",
" result = infer(lines)\n",
" print(\"Label: \", result, \"\\n\")\n",
"end_time = time.perf_counter()\n",
"total_time = end_time - start_time\n",
"print(\"Total Time: \", \"%.2f\" % total_time, \" seconds\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
},
"nbTranslate": {
"displayLangs": [
"*"
],
"hotkey": "alt-t",
"langInMainMenu": true,
"sourceLang": "en",
"targetLang": "fr",
"useGoogleTranslate": true
},
"openvino_notebooks": {
"imageUrl": "https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/distilbert-sequence-classification/distilbert-sequence-classification.png?raw=true",
"tags": {
"categories": [
"Model Demos"
],
"libraries": [],
"other": [],
"tasks": [
"Text Classification"
]
}
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|