File size: 13,942 Bytes
db5855f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
{
 "cells": [
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "e2b748f3",
   "metadata": {},
   "source": [
    "# Sentiment Analysis with OpenVINO™\n",
    "\n",
    "**Sentiment analysis** is the use of natural language processing, text analysis, computational linguistics, and biometrics to systematically identify, extract, quantify, and study affective states and subjective information. This notebook demonstrates how to convert and run a sequence classification model using OpenVINO. \n",
    "\n",
    "\n",
    "#### Table of contents:\n",
    "\n",
    "- [Imports](#Imports)\n",
    "- [Initializing the Model](#Initializing-the-Model)\n",
    "- [Initializing the Tokenizer](#Initializing-the-Tokenizer)\n",
    "- [Convert Model to OpenVINO Intermediate Representation format](#Convert-Model-to-OpenVINO-Intermediate-Representation-format)\n",
    "    - [Select inference device](#Select-inference-device)\n",
    "- [Inference](#Inference)\n",
    "    - [For a single input sentence](#For-a-single-input-sentence)\n",
    "    - [Read from a text file](#Read-from-a-text-file)\n",
    "\n"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "abc41ac0",
   "metadata": {},
   "source": [
    "## Imports\n",
    "[back to top ⬆️](#Table-of-contents:)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ba2626e0",
   "metadata": {},
   "outputs": [],
   "source": [
    "%pip install \"openvino>=2023.1.0\" transformers \"torch>=2.1\" tqdm --extra-index-url https://download.pytorch.org/whl/cpu"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "fe80a355",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "import warnings\n",
    "from pathlib import Path\n",
    "import time\n",
    "from transformers import AutoModelForSequenceClassification, AutoTokenizer\n",
    "import numpy as np\n",
    "import openvino as ov"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "36add5c2",
   "metadata": {},
   "source": [
    "## Initializing the Model\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "We will use the transformer-based [DistilBERT base uncased finetuned SST-2](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) model from Hugging Face."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "5db803ea",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "checkpoint = \"distilbert-base-uncased-finetuned-sst-2-english\"\n",
    "model = AutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path=checkpoint)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "ae70bbf5",
   "metadata": {},
   "source": [
    "## Initializing the Tokenizer\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "Text Preprocessing cleans the text-based input data so it can be fed into the model. [Tokenization](https://towardsdatascience.com/tokenization-for-natural-language-processing-a179a891bad4) splits paragraphs and sentences into smaller units that can be more easily assigned meaning. It involves cleaning the data and assigning tokens or IDs to the words, so they are represented in a vector space where similar words have similar vectors. This helps the model understand the context of a sentence. Here, we will use [`AutoTokenizer`](https://huggingface.co/docs/transformers/main_classes/tokenizer) - a pre-trained tokenizer from Hugging Face:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "782bbebf",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=checkpoint)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "4b00e300",
   "metadata": {},
   "source": [
    "## Convert Model to OpenVINO Intermediate Representation format\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "[Model conversion API](https://docs.openvino.ai/2024/openvino-workflow/model-preparation.html) facilitates the transition between training and deployment environments, performs static model analysis, and adjusts deep learning models for optimal execution on end-point target devices."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "4794f066",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "import torch\n",
    "\n",
    "ir_xml_name = checkpoint + \".xml\"\n",
    "MODEL_DIR = \"model/\"\n",
    "ir_xml_path = Path(MODEL_DIR) / ir_xml_name\n",
    "\n",
    "MAX_SEQ_LENGTH = 128\n",
    "input_info = [\n",
    "    (ov.PartialShape([1, -1]), ov.Type.i64),\n",
    "    (ov.PartialShape([1, -1]), ov.Type.i64),\n",
    "]\n",
    "default_input = torch.ones(1, MAX_SEQ_LENGTH, dtype=torch.int64)\n",
    "inputs = {\n",
    "    \"input_ids\": default_input,\n",
    "    \"attention_mask\": default_input,\n",
    "}\n",
    "\n",
    "ov_model = ov.convert_model(model, input=input_info, example_input=inputs)\n",
    "ov.save_model(ov_model, ir_xml_path)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "27cc074e",
   "metadata": {},
   "source": [
    "OpenVINO™ Runtime uses the [Infer Request](https://docs.openvino.ai/2024/openvino-workflow/running-inference/integrate-openvino-with-your-application/inference-request.html) mechanism which enables running models on different devices in asynchronous or synchronous manners. The model graph is sent as an argument to the OpenVINO API and an inference request is created. The default inference mode is AUTO but it can be changed according to requirements and hardware available. You can explore the different inference modes and their usage [in documentation.](https://docs.openvino.ai/2024/openvino-workflow/running-inference/inference-devices-and-modes.html)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "39248a56-11b3-42cc-bf5f-de05e1732c77",
   "metadata": {},
   "outputs": [],
   "source": [
    "core = ov.Core()"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "74daf538-ac4d-4fb8-a069-db3af4cf40ea",
   "metadata": {},
   "source": [
    "### Select inference device\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "select device from dropdown list for running inference using OpenVINO"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "1e27ef1d-e91e-4cbe-8a86-457ddeb0a1c7",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "3d4bb3500d474fbcb4d52449d22df756",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Dropdown(description='Device:', index=2, options=('CPU', 'GPU', 'AUTO'), value='AUTO')"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import ipywidgets as widgets\n",
    "\n",
    "device = widgets.Dropdown(\n",
    "    options=core.available_devices + [\"AUTO\"],\n",
    "    value=\"AUTO\",\n",
    "    description=\"Device:\",\n",
    "    disabled=False,\n",
    ")\n",
    "\n",
    "device"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "e31a2644",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "warnings.filterwarnings(\"ignore\")\n",
    "compiled_model = core.compile_model(ov_model, device.value)\n",
    "infer_request = compiled_model.create_infer_request()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "de01fccc",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "def softmax(x):\n",
    "    \"\"\"\n",
    "    Defining a softmax function to extract\n",
    "    the prediction from the output of the IR format\n",
    "    Parameters: Logits array\n",
    "    Returns: Probabilities\n",
    "    \"\"\"\n",
    "\n",
    "    e_x = np.exp(x - np.max(x))\n",
    "    return e_x / e_x.sum()"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "2e778507",
   "metadata": {},
   "source": [
    "## Inference\n",
    "[back to top ⬆️](#Table-of-contents:)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "cc0c91a6",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "def infer(input_text):\n",
    "    \"\"\"\n",
    "    Creating a generic inference function\n",
    "    to read the input and infer the result\n",
    "    into 2 classes: Positive or Negative.\n",
    "    Parameters: Text to be processed\n",
    "    Returns: Label: Positive or Negative.\n",
    "    \"\"\"\n",
    "\n",
    "    input_text = tokenizer(\n",
    "        input_text,\n",
    "        truncation=True,\n",
    "        return_tensors=\"np\",\n",
    "    )\n",
    "    inputs = dict(input_text)\n",
    "    label = {0: \"NEGATIVE\", 1: \"POSITIVE\"}\n",
    "    result = infer_request.infer(inputs=inputs)\n",
    "    for i in result.values():\n",
    "        probability = np.argmax(softmax(i))\n",
    "    return label[probability]"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "b60e79fd",
   "metadata": {},
   "source": [
    "### For a single input sentence\n",
    "[back to top ⬆️](#Table-of-contents:)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "cf976f71",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Label:  POSITIVE\n",
      "Total Time:  0.02  seconds\n"
     ]
    }
   ],
   "source": [
    "input_text = \"I had a wonderful day\"\n",
    "start_time = time.perf_counter()\n",
    "result = infer(input_text)\n",
    "end_time = time.perf_counter()\n",
    "total_time = end_time - start_time\n",
    "print(\"Label: \", result)\n",
    "print(\"Total Time: \", \"%.2f\" % total_time, \" seconds\")"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "29b4d013",
   "metadata": {},
   "source": [
    "### Read from a text file\n",
    "[back to top ⬆️](#Table-of-contents:)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5c267032",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Fetch `notebook_utils` module\n",
    "import requests\n",
    "\n",
    "r = requests.get(\n",
    "    url=\"https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py\",\n",
    ")\n",
    "\n",
    "open(\"notebook_utils.py\", \"w\").write(r.text)\n",
    "from notebook_utils import download_file\n",
    "\n",
    "# Download the text from the openvino_notebooks storage\n",
    "vocab_file_path = download_file(\n",
    "    \"https://storage.openvinotoolkit.org/repositories/openvino_notebooks/data/data/text/food_reviews.txt\",\n",
    "    directory=\"data\",\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "63f57d28",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "User Input:  The food was horrible.\n",
      "\n",
      "Label:  NEGATIVE \n",
      "\n",
      "User Input:  We went because the restaurant had good reviews.\n",
      "Label:  POSITIVE \n",
      "\n",
      "Total Time:  0.01  seconds\n"
     ]
    }
   ],
   "source": [
    "start_time = time.perf_counter()\n",
    "with vocab_file_path.open(mode=\"r\") as f:\n",
    "    input_text = f.readlines()\n",
    "    for lines in input_text:\n",
    "        print(\"User Input: \", lines)\n",
    "        result = infer(lines)\n",
    "        print(\"Label: \", result, \"\\n\")\n",
    "end_time = time.perf_counter()\n",
    "total_time = end_time - start_time\n",
    "print(\"Total Time: \", \"%.2f\" % total_time, \" seconds\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  },
  "nbTranslate": {
   "displayLangs": [
    "*"
   ],
   "hotkey": "alt-t",
   "langInMainMenu": true,
   "sourceLang": "en",
   "targetLang": "fr",
   "useGoogleTranslate": true
  },
  "openvino_notebooks": {
   "imageUrl": "https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/distilbert-sequence-classification/distilbert-sequence-classification.png?raw=true",
   "tags": {
    "categories": [
     "Model Demos"
    ],
    "libraries": [],
    "other": [],
    "tasks": [
     "Text Classification"
    ]
   }
  },
  "toc": {
   "base_numbering": 1,
   "nav_menu": {},
   "number_sections": true,
   "sideBar": true,
   "skip_h1_title": false,
   "title_cell": "Table of Contents",
   "title_sidebar": "Contents",
   "toc_cell": false,
   "toc_position": {},
   "toc_section_display": true,
   "toc_window_display": false
  },
  "widgets": {
   "application/vnd.jupyter.widget-state+json": {
    "state": {},
    "version_major": 2,
    "version_minor": 0
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}