Spaces:
Runtime error
Runtime error
File size: 108,411 Bytes
db5855f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# OpenVINO™ model conversion API\n",
"\n",
"This notebook shows how to convert a model from original framework format to OpenVINO Intermediate Representation (IR).\n",
"\n",
"\n",
"#### Table of contents:\n",
"\n",
"- [OpenVINO IR format](#OpenVINO-IR-format)\n",
"- [IR preparation with Python conversion API and Model Optimizer command-line tool](#IR-preparation-with-Python-conversion-API-and-Model-Optimizer-command-line-tool)\n",
"- [Fetching example models](#Fetching-example-models)\n",
"- [Basic conversion](#Basic-conversion)\n",
"- [Model conversion parameters](#Model-conversion-parameters)\n",
" - [Setting Input Shapes](#Setting-Input-Shapes)\n",
" - [Cutting Off Parts of a Model](#Cutting-Off-Parts-of-a-Model)\n",
" - [Embedding Preprocessing Computation](#Embedding-Preprocessing-Computation)\n",
" - [Specifying Layout](#Specifying-Layout)\n",
" - [Changing Model Layout](#Changing-Model-Layout)\n",
" - [Specifying Mean and Scale Values](#Specifying-Mean-and-Scale-Values)\n",
" - [Reversing Input Channels](#Reversing-Input-Channels)\n",
" - [Compressing a Model to FP16](#Compressing-a-Model-to-FP16)\n",
"- [Convert Models Represented as Python Objects](#Convert-Models-Represented-as-Python-Objects)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# Required imports. Please execute this cell first.\n",
"%pip install -q --extra-index-url https://download.pytorch.org/whl/cpu \\\n",
"\"openvino-dev>=2024.0.0\" \"requests\" \"tqdm\" \"transformers[onnx]>=4.21.1\" \"torch>=2.1\" \"torchvision\""
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## OpenVINO IR format\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"OpenVINO [Intermediate Representation (IR)](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) is the proprietary model format of OpenVINO. It is produced after converting a model with model conversion API. Model conversion API translates the frequently used deep learning operations to their respective similar representation in OpenVINO and tunes them with the associated weights and biases from the trained model. The resulting IR contains two files: an `.xml` file, containing information about network topology, and a `.bin` file, containing the weights and biases binary data."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## IR preparation with Python conversion API and Model Optimizer command-line tool\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"There are two ways to convert a model from the original framework format to OpenVINO IR: Python conversion API and Model Optimizer command-line tool. You can choose one of them based on whichever is most convenient for you. There should not be any differences in the results of model conversion if the same set of parameters is used. For more details, refer to [Model Preparation](https://docs.openvino.ai/2024/openvino-workflow/model-preparation.html) documentation."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"usage: main.py [options]\n",
"\n",
"optional arguments:\n",
" -h, --help show this help message and exit\n",
" --framework FRAMEWORK\n",
" Name of the framework used to train the input model.\n",
"\n",
"Framework-agnostic parameters:\n",
" --model_name MODEL_NAME, -n MODEL_NAME\n",
" Model_name parameter passed to the final create_ir\n",
" transform. This parameter is used to name a network in\n",
" a generated IR and output .xml/.bin files.\n",
" --output_dir OUTPUT_DIR, -o OUTPUT_DIR\n",
" Directory that stores the generated IR. By default, it\n",
" is the directory from where the Model Conversion is\n",
" launched.\n",
" --freeze_placeholder_with_value FREEZE_PLACEHOLDER_WITH_VALUE\n",
" Replaces input layer with constant node with provided\n",
" value, for example: \"node_name->True\". It will be\n",
" DEPRECATED in future releases. Use \"input\" option to\n",
" specify a value for freezing.\n",
" --static_shape Enables IR generation for fixed input shape (folding\n",
" `ShapeOf` operations and shape-calculating sub-graphs\n",
" to `Constant`). Changing model input shape using the\n",
" OpenVINO Runtime API in runtime may fail for such an\n",
" IR.\n",
" --use_new_frontend Force the usage of new Frontend for model conversion\n",
" into IR. The new Frontend is C++ based and is\n",
" available for ONNX* and PaddlePaddle* models. Model\n",
" Conversion API uses new Frontend for ONNX* and\n",
" PaddlePaddle* by default that means `use_new_frontend`\n",
" and `use_legacy_frontend` options are not specified.\n",
" --use_legacy_frontend\n",
" Force the usage of legacy Frontend for model\n",
" conversion into IR. The legacy Frontend is Python\n",
" based and is available for TensorFlow*, ONNX*, MXNet*,\n",
" Caffe*, and Kaldi* models.\n",
" --input_model INPUT_MODEL, -w INPUT_MODEL, -m INPUT_MODEL\n",
" Tensorflow*: a file with a pre-trained model (binary\n",
" or text .pb file after freezing). Caffe*: a model\n",
" proto file with model weights.\n",
" --input INPUT Quoted list of comma-separated input nodes names with\n",
" shapes, data types, and values for freezing. The order\n",
" of inputs in converted model is the same as order of\n",
" specified operation names. The shape and value are\n",
" specified as comma-separated lists. The data type of\n",
" input node is specified in braces and can have one of\n",
" the values: f64 (float64), f32 (float32), f16\n",
" (float16), i64 (int64), i32 (int32), u8 (uint8),\n",
" boolean (bool). Data type is optional. If it's not\n",
" specified explicitly then there are two options: if\n",
" input node is a parameter, data type is taken from the\n",
" original node dtype, if input node is not a parameter,\n",
" data type is set to f32. Example, to set `input_1`\n",
" with shape [1,100], and Parameter node `sequence_len`\n",
" with scalar input with value `150`, and boolean input\n",
" `is_training` with `False` value use the following\n",
" format:\n",
" \"input_1[1,100],sequence_len->150,is_training->False\".\n",
" Another example, use the following format to set input\n",
" port 0 of the node `node_name1` with the shape [3,4]\n",
" as an input node and freeze output port 1 of the node\n",
" \"node_name2\" with the value [20,15] of the int32 type\n",
" and shape [2]:\n",
" \"0:node_name1[3,4],node_name2:1[2]{i32}->[20,15]\".\n",
" --output OUTPUT The name of the output operation of the model or list\n",
" of names. For TensorFlow*, do not add :0 to this\n",
" name.The order of outputs in converted model is the\n",
" same as order of specified operation names.\n",
" --input_shape INPUT_SHAPE\n",
" Input shape(s) that should be fed to an input node(s)\n",
" of the model. Shape is defined as a comma-separated\n",
" list of integer numbers enclosed in parentheses or\n",
" square brackets, for example [1,3,227,227] or\n",
" (1,227,227,3), where the order of dimensions depends\n",
" on the framework input layout of the model. For\n",
" example, [N,C,H,W] is used for ONNX* models and\n",
" [N,H,W,C] for TensorFlow* models. The shape can\n",
" contain undefined dimensions (? or -1) and should fit\n",
" the dimensions defined in the input operation of the\n",
" graph. Boundaries of undefined dimension can be\n",
" specified with ellipsis, for example\n",
" [1,1..10,128,128]. One boundary can be undefined, for\n",
" example [1,..100] or [1,3,1..,1..]. If there are\n",
" multiple inputs in the model, --input_shape should\n",
" contain definition of shape for each input separated\n",
" by a comma, for example: [1,3,227,227],[2,4] for a\n",
" model with two inputs with 4D and 2D shapes.\n",
" Alternatively, specify shapes with the --input option.\n",
" --example_input EXAMPLE_INPUT\n",
" Sample of model input in original framework. For\n",
" PyTorch it can be torch.Tensor. For Tensorflow it can\n",
" be tf.Tensor or numpy.ndarray. For PaddlePaddle it can\n",
" be Paddle Variable.\n",
" --batch BATCH, -b BATCH\n",
" Set batch size. It applies to 1D or higher dimension\n",
" inputs. The default dimension index for the batch is\n",
" zero. Use a label 'n' in --layout or --source_layout\n",
" option to set the batch dimension. For example,\n",
" \"x(hwnc)\" defines the third dimension to be the batch.\n",
" --mean_values MEAN_VALUES\n",
" Mean values to be used for the input image per\n",
" channel. Values to be provided in the (R,G,B) or\n",
" [R,G,B] format. Can be defined for desired input of\n",
" the model, for example: \"--mean_values\n",
" data[255,255,255],info[255,255,255]\". The exact\n",
" meaning and order of channels depend on how the\n",
" original model was trained.\n",
" --scale_values SCALE_VALUES\n",
" Scale values to be used for the input image per\n",
" channel. Values are provided in the (R,G,B) or [R,G,B]\n",
" format. Can be defined for desired input of the model,\n",
" for example: \"--scale_values\n",
" data[255,255,255],info[255,255,255]\". The exact\n",
" meaning and order of channels depend on how the\n",
" original model was trained. If both --mean_values and\n",
" --scale_values are specified, the mean is subtracted\n",
" first and then scale is applied regardless of the\n",
" order of options in command line.\n",
" --scale SCALE, -s SCALE\n",
" All input values coming from original network inputs\n",
" will be divided by this value. When a list of inputs\n",
" is overridden by the --input parameter, this scale is\n",
" not applied for any input that does not match with the\n",
" original input of the model. If both --mean_values and\n",
" --scale are specified, the mean is subtracted first\n",
" and then scale is applied regardless of the order of\n",
" options in command line.\n",
" --reverse_input_channels [REVERSE_INPUT_CHANNELS]\n",
" Switch the input channels order from RGB to BGR (or\n",
" vice versa). Applied to original inputs of the model\n",
" if and only if a number of channels equals 3. When\n",
" --mean_values/--scale_values are also specified,\n",
" reversing of channels will be applied to user's input\n",
" data first, so that numbers in --mean_values and\n",
" --scale_values go in the order of channels used in the\n",
" original model. In other words, if both options are\n",
" specified, then the data flow in the model looks as\n",
" following: Parameter -> ReverseInputChannels -> Mean\n",
" apply-> Scale apply -> the original body of the model.\n",
" --source_layout SOURCE_LAYOUT\n",
" Layout of the input or output of the model in the\n",
" framework. Layout can be specified in the short form,\n",
" e.g. nhwc, or in complex form, e.g. \"[n,h,w,c]\".\n",
" Example for many names: \"in_name1([n,h,w,c]),in_name2(\n",
" nc),out_name1(n),out_name2(nc)\". Layout can be\n",
" partially defined, \"?\" can be used to specify\n",
" undefined layout for one dimension, \"...\" can be used\n",
" to specify undefined layout for multiple dimensions,\n",
" for example \"?c??\", \"nc...\", \"n...c\", etc.\n",
" --target_layout TARGET_LAYOUT\n",
" Same as --source_layout, but specifies target layout\n",
" that will be in the model after processing by\n",
" ModelOptimizer.\n",
" --layout LAYOUT Combination of --source_layout and --target_layout.\n",
" Can't be used with either of them. If model has one\n",
" input it is sufficient to specify layout of this\n",
" input, for example --layout nhwc. To specify layouts\n",
" of many tensors, names must be provided, for example:\n",
" --layout \"name1(nchw),name2(nc)\". It is possible to\n",
" instruct ModelOptimizer to change layout, for example:\n",
" --layout \"name1(nhwc->nchw),name2(cn->nc)\". Also \"*\"\n",
" in long layout form can be used to fuse dimensions,\n",
" for example \"[n,c,...]->[n*c,...]\".\n",
" --compress_to_fp16 [COMPRESS_TO_FP16]\n",
" If the original model has FP32 weights or biases, they\n",
" are compressed to FP16. All intermediate data is kept\n",
" in original precision. Option can be specified alone\n",
" as \"--compress_to_fp16\", or explicit True/False values\n",
" can be set, for example: \"--compress_to_fp16=False\",\n",
" or \"--compress_to_fp16=True\"\n",
" --extensions EXTENSIONS\n",
" Paths or a comma-separated list of paths to libraries\n",
" (.so or .dll) with extensions. For the legacy MO path\n",
" (if `--use_legacy_frontend` is used), a directory or a\n",
" comma-separated list of directories with extensions\n",
" are supported. To disable all extensions including\n",
" those that are placed at the default location, pass an\n",
" empty string.\n",
" --transform TRANSFORM\n",
" Apply additional transformations. Usage: \"--transform\n",
" transformation_name1[args],transformation_name2...\"\n",
" where [args] is key=value pairs separated by\n",
" semicolon. Examples: \"--transform LowLatency2\" or \"--\n",
" transform Pruning\" or \"--transform\n",
" LowLatency2[use_const_initializer=False]\" or \"--\n",
" transform \"MakeStateful[param_res_names= {'input_name_\n",
" 1':'output_name_1','input_name_2':'output_name_2'}]\"\n",
" Available transformations: \"LowLatency2\",\n",
" \"MakeStateful\", \"Pruning\"\n",
" --transformations_config TRANSFORMATIONS_CONFIG\n",
" Use the configuration file with transformations\n",
" description. Transformations file can be specified as\n",
" relative path from the current directory, as absolute\n",
" path or as arelative path from the mo root directory.\n",
" --silent [SILENT] Prevent any output messages except those that\n",
" correspond to log level equals ERROR, that can be set\n",
" with the following option: --log_level. By default,\n",
" log level is already ERROR.\n",
" --log_level {CRITICAL,ERROR,WARN,WARNING,INFO,DEBUG,NOTSET}\n",
" Logger level of logging massages from MO. Expected one\n",
" of ['CRITICAL', 'ERROR', 'WARN', 'WARNING', 'INFO',\n",
" 'DEBUG', 'NOTSET'].\n",
" --version Version of Model Optimizer\n",
" --progress [PROGRESS]\n",
" Enable model conversion progress display.\n",
" --stream_output [STREAM_OUTPUT]\n",
" Switch model conversion progress display to a\n",
" multiline mode.\n",
" --share_weights [SHARE_WEIGHTS]\n",
" Map memory of weights instead reading files or share\n",
" memory from input model. Currently, mapping feature is\n",
" provided only for ONNX models that do not require\n",
" fallback to the legacy ONNX frontend for the\n",
" conversion.\n",
"\n",
"TensorFlow*-specific parameters:\n",
" --input_model_is_text [INPUT_MODEL_IS_TEXT]\n",
" TensorFlow*: treat the input model file as a text\n",
" protobuf format. If not specified, the Model Optimizer\n",
" treats it as a binary file by default.\n",
" --input_checkpoint INPUT_CHECKPOINT\n",
" TensorFlow*: variables file to load.\n",
" --input_meta_graph INPUT_META_GRAPH\n",
" Tensorflow*: a file with a meta-graph of the model\n",
" before freezing\n",
" --saved_model_dir SAVED_MODEL_DIR\n",
" TensorFlow*: directory with a model in SavedModel\n",
" format of TensorFlow 1.x or 2.x version.\n",
" --saved_model_tags SAVED_MODEL_TAGS\n",
" Group of tag(s) of the MetaGraphDef to load, in string\n",
" format, separated by ','. For tag-set contains\n",
" multiple tags, all tags must be passed in.\n",
" --tensorflow_custom_operations_config_update TENSORFLOW_CUSTOM_OPERATIONS_CONFIG_UPDATE\n",
" TensorFlow*: update the configuration file with node\n",
" name patterns with input/output nodes information.\n",
" --tensorflow_object_detection_api_pipeline_config TENSORFLOW_OBJECT_DETECTION_API_PIPELINE_CONFIG\n",
" TensorFlow*: path to the pipeline configuration file\n",
" used to generate model created with help of Object\n",
" Detection API.\n",
" --tensorboard_logdir TENSORBOARD_LOGDIR\n",
" TensorFlow*: dump the input graph to a given directory\n",
" that should be used with TensorBoard.\n",
" --tensorflow_custom_layer_libraries TENSORFLOW_CUSTOM_LAYER_LIBRARIES\n",
" TensorFlow*: comma separated list of shared libraries\n",
" with TensorFlow* custom operations implementation.\n",
"\n",
"Caffe*-specific parameters:\n",
" --input_proto INPUT_PROTO, -d INPUT_PROTO\n",
" Deploy-ready prototxt file that contains a topology\n",
" structure and layer attributes\n",
" --caffe_parser_path CAFFE_PARSER_PATH\n",
" Path to Python Caffe* parser generated from\n",
" caffe.proto\n",
" --k K Path to CustomLayersMapping.xml to register custom\n",
" layers\n",
" --disable_omitting_optional [DISABLE_OMITTING_OPTIONAL]\n",
" Disable omitting optional attributes to be used for\n",
" custom layers. Use this option if you want to transfer\n",
" all attributes of a custom layer to IR. Default\n",
" behavior is to transfer the attributes with default\n",
" values and the attributes defined by the user to IR.\n",
" --enable_flattening_nested_params [ENABLE_FLATTENING_NESTED_PARAMS]\n",
" Enable flattening optional params to be used for\n",
" custom layers. Use this option if you want to transfer\n",
" attributes of a custom layer to IR with flattened\n",
" nested parameters. Default behavior is to transfer the\n",
" attributes without flattening nested parameters.\n",
"\n",
"MXNet-specific parameters:\n",
" --input_symbol INPUT_SYMBOL\n",
" Symbol file (for example, model-symbol.json) that\n",
" contains a topology structure and layer attributes\n",
" --nd_prefix_name ND_PREFIX_NAME\n",
" Prefix name for args.nd and argx.nd files.\n",
" --pretrained_model_name PRETRAINED_MODEL_NAME\n",
" Name of a pretrained MXNet model without extension and\n",
" epoch number. This model will be merged with args.nd\n",
" and argx.nd files\n",
" --save_params_from_nd [SAVE_PARAMS_FROM_ND]\n",
" Enable saving built parameters file from .nd files\n",
" --legacy_mxnet_model [LEGACY_MXNET_MODEL]\n",
" Enable MXNet loader to make a model compatible with\n",
" the latest MXNet version. Use only if your model was\n",
" trained with MXNet version lower than 1.0.0\n",
" --enable_ssd_gluoncv [ENABLE_SSD_GLUONCV]\n",
" Enable pattern matchers replacers for converting\n",
" gluoncv ssd topologies.\n",
"\n",
"Kaldi-specific parameters:\n",
" --counts COUNTS Path to the counts file\n",
" --remove_output_softmax [REMOVE_OUTPUT_SOFTMAX]\n",
" Removes the SoftMax layer that is the output layer\n",
" --remove_memory [REMOVE_MEMORY]\n",
" Removes the Memory layer and use additional inputs\n",
" outputs instead\n"
]
}
],
"source": [
"# Model Optimizer CLI tool parameters description\n",
"\n",
"! mo --help"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Optional parameters:\n",
" --help \n",
"\t\t\tPrint available parameters.\n",
" --framework \n",
"\t\t\tName of the framework used to train the input model.\n",
"\n",
"Framework-agnostic parameters:\n",
" --input_model \n",
"\t\t\tModel object in original framework (PyTorch, Tensorflow) or path to\n",
"\t\t\tmodel file.\n",
"\t\t\tTensorflow*: a file with a pre-trained model (binary or text .pb file\n",
"\t\t\tafter freezing).\n",
"\t\t\tCaffe*: a model proto file with model weights\n",
"\t\t\t\n",
"\t\t\tSupported formats of input model:\n",
"\t\t\t\n",
"\t\t\tPaddlePaddle\n",
"\t\t\tpaddle.hapi.model.Model\n",
"\t\t\tpaddle.fluid.dygraph.layers.Layer\n",
"\t\t\tpaddle.fluid.executor.Executor\n",
"\t\t\t\n",
"\t\t\tPyTorch\n",
"\t\t\ttorch.nn.Module\n",
"\t\t\ttorch.jit.ScriptModule\n",
"\t\t\ttorch.jit.ScriptFunction\n",
"\t\t\t\n",
"\t\t\tTF\n",
"\t\t\ttf.compat.v1.Graph\n",
"\t\t\ttf.compat.v1.GraphDef\n",
"\t\t\ttf.compat.v1.wrap_function\n",
"\t\t\ttf.compat.v1.session\n",
"\t\t\t\n",
"\t\t\tTF2 / Keras\n",
"\t\t\ttf.keras.Model\n",
"\t\t\ttf.keras.layers.Layer\n",
"\t\t\ttf.function\n",
"\t\t\ttf.Module\n",
"\t\t\ttf.train.checkpoint\n",
" --input \n",
"\t\t\tInput can be set by passing a list of InputCutInfo objects or by a list\n",
"\t\t\tof tuples. Each tuple can contain optionally input name, input\n",
"\t\t\ttype or input shape. Example: input=(\"op_name\", PartialShape([-1,\n",
"\t\t\t3, 100, 100]), Type(np.float32)). Alternatively input can be set by\n",
"\t\t\ta string or list of strings of the following format. Quoted list of comma-separated\n",
"\t\t\tinput nodes names with shapes, data types, and values for freezing.\n",
"\t\t\tIf operation names are specified, the order of inputs in converted\n",
"\t\t\tmodel will be the same as order of specified operation names (applicable\n",
"\t\t\tfor TF2, ONNX, MxNet).\n",
"\t\t\tThe shape and value are specified as comma-separated lists. The data\n",
"\t\t\ttype of input node is specified\n",
"\t\t\tin braces and can have one of the values: f64 (float64), f32 (float32),\n",
"\t\t\tf16 (float16), i64\n",
"\t\t\t(int64), i32 (int32), u8 (uint8), boolean (bool). Data type is optional.\n",
"\t\t\tIf it's not specified explicitly then there are two options: if input\n",
"\t\t\tnode is a parameter, data type is taken from the original node dtype,\n",
"\t\t\tif input node is not a parameter, data type is set to f32. Example, to set\n",
"\t\t\t`input_1` with shape [1,100], and Parameter node `sequence_len` with\n",
"\t\t\tscalar input with value `150`, and boolean input `is_training` with\n",
"\t\t\t`False` value use the following format: \"input_1[1,100],sequence_len->150,is_training->False\".\n",
"\t\t\tAnother example, use the following format to set input port 0 of the node\n",
"\t\t\t`node_name1` with the shape [3,4] as an input node and freeze output\n",
"\t\t\tport 1 of the node `node_name2` with the value [20,15] of the int32 type\n",
"\t\t\tand shape [2]: \"0:node_name1[3,4],node_name2:1[2]{i32}->[20,15]\".\n",
"\t\t\t\n",
" --output \n",
"\t\t\tThe name of the output operation of the model or list of names. For TensorFlow*,\n",
"\t\t\tdo not add :0 to this name.The order of outputs in converted model is the\n",
"\t\t\tsame as order of specified operation names.\n",
" --input_shape \n",
"\t\t\tInput shape(s) that should be fed to an input node(s) of the model. Input\n",
"\t\t\tshapes can be defined by passing a list of objects of type PartialShape,\n",
"\t\t\tShape, [Dimension, ...] or [int, ...] or by a string of the following\n",
"\t\t\tformat. Shape is defined as a comma-separated list of integer numbers\n",
"\t\t\tenclosed in parentheses or square brackets, for example [1,3,227,227]\n",
"\t\t\tor (1,227,227,3), where the order of dimensions depends on the framework\n",
"\t\t\tinput layout of the model. For example, [N,C,H,W] is used for ONNX* models\n",
"\t\t\tand [N,H,W,C] for TensorFlow* models. The shape can contain undefined\n",
"\t\t\tdimensions (? or -1) and should fit the dimensions defined in the input\n",
"\t\t\toperation of the graph. Boundaries of undefined dimension can be specified\n",
"\t\t\twith ellipsis, for example [1,1..10,128,128]. One boundary can be\n",
"\t\t\tundefined, for example [1,..100] or [1,3,1..,1..]. If there are multiple\n",
"\t\t\tinputs in the model, --input_shape should contain definition of shape\n",
"\t\t\tfor each input separated by a comma, for example: [1,3,227,227],[2,4]\n",
"\t\t\tfor a model with two inputs with 4D and 2D shapes. Alternatively, specify\n",
"\t\t\tshapes with the --input option.\n",
" --example_input \n",
"\t\t\tSample of model input in original framework.\n",
"\t\t\tFor PyTorch it can be torch.Tensor.\n",
"\t\t\tFor Tensorflow it can be tf.Tensor or numpy.ndarray.\n",
"\t\t\tFor PaddlePaddle it can be Paddle Variable.\n",
" --batch \n",
"\t\t\tSet batch size. It applies to 1D or higher dimension inputs.\n",
"\t\t\tThe default dimension index for the batch is zero.\n",
"\t\t\tUse a label 'n' in --layout or --source_layout option to set the batch\n",
"\t\t\tdimension.\n",
"\t\t\tFor example, \"x(hwnc)\" defines the third dimension to be the batch.\n",
"\t\t\t\n",
" --mean_values \n",
"\t\t\tMean values to be used for the input image per channel. Mean values can\n",
"\t\t\tbe set by passing a dictionary, where key is input name and value is mean\n",
"\t\t\tvalue. For example mean_values={'data':[255,255,255],'info':[255,255,255]}.\n",
"\t\t\tOr mean values can be set by a string of the following format. Values to\n",
"\t\t\tbe provided in the (R,G,B) or [R,G,B] format. Can be defined for desired\n",
"\t\t\tinput of the model, for example: \"--mean_values data[255,255,255],info[255,255,255]\".\n",
"\t\t\tThe exact meaning and order of channels depend on how the original model\n",
"\t\t\twas trained.\n",
" --scale_values \n",
"\t\t\tScale values to be used for the input image per channel. Scale values\n",
"\t\t\tcan be set by passing a dictionary, where key is input name and value is\n",
"\t\t\tscale value. For example scale_values={'data':[255,255,255],'info':[255,255,255]}.\n",
"\t\t\tOr scale values can be set by a string of the following format. Values\n",
"\t\t\tare provided in the (R,G,B) or [R,G,B] format. Can be defined for desired\n",
"\t\t\tinput of the model, for example: \"--scale_values data[255,255,255],info[255,255,255]\".\n",
"\t\t\tThe exact meaning and order of channels depend on how the original model\n",
"\t\t\twas trained. If both --mean_values and --scale_values are specified,\n",
"\t\t\tthe mean is subtracted first and then scale is applied regardless of\n",
"\t\t\tthe order of options in command line.\n",
" --scale \n",
"\t\t\tAll input values coming from original network inputs will be divided\n",
"\t\t\tby this value. When a list of inputs is overridden by the --input parameter,\n",
"\t\t\tthis scale is not applied for any input that does not match with the original\n",
"\t\t\tinput of the model. If both --mean_values and --scale are specified,\n",
"\t\t\tthe mean is subtracted first and then scale is applied regardless of\n",
"\t\t\tthe order of options in command line.\n",
" --reverse_input_channels \n",
"\t\t\tSwitch the input channels order from RGB to BGR (or vice versa). Applied\n",
"\t\t\tto original inputs of the model if and only if a number of channels equals\n",
"\t\t\t3. When --mean_values/--scale_values are also specified, reversing\n",
"\t\t\tof channels will be applied to user's input data first, so that numbers\n",
"\t\t\tin --mean_values and --scale_values go in the order of channels used\n",
"\t\t\tin the original model. In other words, if both options are specified,\n",
"\t\t\tthen the data flow in the model looks as following: Parameter -> ReverseInputChannels\n",
"\t\t\t-> Mean apply-> Scale apply -> the original body of the model.\n",
" --source_layout \n",
"\t\t\tLayout of the input or output of the model in the framework. Layout can\n",
"\t\t\tbe set by passing a dictionary, where key is input name and value is LayoutMap\n",
"\t\t\tobject. Or layout can be set by string of the following format. Layout\n",
"\t\t\tcan be specified in the short form, e.g. nhwc, or in complex form, e.g.\n",
"\t\t\t\"[n,h,w,c]\". Example for many names: \"in_name1([n,h,w,c]),in_name2(nc),out_name1(n),out_name2(nc)\".\n",
"\t\t\tLayout can be partially defined, \"?\" can be used to specify undefined\n",
"\t\t\tlayout for one dimension, \"...\" can be used to specify undefined layout\n",
"\t\t\tfor multiple dimensions, for example \"?c??\", \"nc...\", \"n...c\", etc.\n",
"\t\t\t\n",
" --target_layout \n",
"\t\t\tSame as --source_layout, but specifies target layout that will be in\n",
"\t\t\tthe model after processing by ModelOptimizer.\n",
" --layout \n",
"\t\t\tCombination of --source_layout and --target_layout. Can't be used\n",
"\t\t\twith either of them. If model has one input it is sufficient to specify\n",
"\t\t\tlayout of this input, for example --layout nhwc. To specify layouts\n",
"\t\t\tof many tensors, names must be provided, for example: --layout \"name1(nchw),name2(nc)\".\n",
"\t\t\tIt is possible to instruct ModelOptimizer to change layout, for example:\n",
"\t\t\t--layout \"name1(nhwc->nchw),name2(cn->nc)\".\n",
"\t\t\tAlso \"*\" in long layout form can be used to fuse dimensions, for example\n",
"\t\t\t\"[n,c,...]->[n*c,...]\".\n",
" --compress_to_fp16 \n",
"\t\t\tIf the original model has FP32 weights or biases, they are compressed\n",
"\t\t\tto FP16. All intermediate data is kept in original precision. Option\n",
"\t\t\tcan be specified alone as \"--compress_to_fp16\", or explicit True/False\n",
"\t\t\tvalues can be set, for example: \"--compress_to_fp16=False\", or \"--compress_to_fp16=True\"\n",
"\t\t\t\n",
" --extensions \n",
"\t\t\tPaths to libraries (.so or .dll) with extensions, comma-separated\n",
"\t\t\tlist of paths, objects derived from BaseExtension class or lists of\n",
"\t\t\tobjects. For the legacy MO path (if `--use_legacy_frontend` is used),\n",
"\t\t\ta directory or a comma-separated list of directories with extensions\n",
"\t\t\tare supported. To disable all extensions including those that are placed\n",
"\t\t\tat the default location, pass an empty string.\n",
" --transform \n",
"\t\t\tApply additional transformations. 'transform' can be set by a list\n",
"\t\t\tof tuples, where the first element is transform name and the second element\n",
"\t\t\tis transform parameters. For example: [('LowLatency2', {{'use_const_initializer':\n",
"\t\t\tFalse}}), ...]\"--transform transformation_name1[args],transformation_name2...\"\n",
"\t\t\twhere [args] is key=value pairs separated by semicolon. Examples:\n",
"\t\t\t \"--transform LowLatency2\" or\n",
"\t\t\t \"--transform Pruning\" or\n",
"\t\t\t \"--transform LowLatency2[use_const_initializer=False]\" or\n",
"\t\t\t \"--transform \"MakeStateful[param_res_names=\n",
"\t\t\t{'input_name_1':'output_name_1','input_name_2':'output_name_2'}]\"\"\n",
"\t\t\tAvailable transformations: \"LowLatency2\", \"MakeStateful\", \"Pruning\"\n",
"\t\t\t\n",
" --transformations_config \n",
"\t\t\tUse the configuration file with transformations description or pass\n",
"\t\t\tobject derived from BaseExtension class. Transformations file can\n",
"\t\t\tbe specified as relative path from the current directory, as absolute\n",
"\t\t\tpath or as relative path from the mo root directory.\n",
" --silent \n",
"\t\t\tPrevent any output messages except those that correspond to log level\n",
"\t\t\tequals ERROR, that can be set with the following option: --log_level.\n",
"\t\t\tBy default, log level is already ERROR.\n",
" --log_level \n",
"\t\t\tLogger level of logging massages from MO.\n",
"\t\t\tExpected one of ['CRITICAL', 'ERROR', 'WARN', 'WARNING', 'INFO',\n",
"\t\t\t'DEBUG', 'NOTSET'].\n",
" --version \n",
"\t\t\tVersion of Model Optimizer\n",
" --progress \n",
"\t\t\tEnable model conversion progress display.\n",
" --stream_output \n",
"\t\t\tSwitch model conversion progress display to a multiline mode.\n",
" --share_weights \n",
"\t\t\tMap memory of weights instead reading files or share memory from input\n",
"\t\t\tmodel.\n",
"\t\t\tCurrently, mapping feature is provided only for ONNX models\n",
"\t\t\tthat do not require fallback to the legacy ONNX frontend for the conversion.\n",
"\t\t\t\n",
"\n",
"PaddlePaddle-specific parameters:\n",
" --example_output \n",
"\t\t\tSample of model output in original framework. For PaddlePaddle it can\n",
"\t\t\tbe Paddle Variable.\n",
"\n",
"TensorFlow*-specific parameters:\n",
" --input_model_is_text \n",
"\t\t\tTensorFlow*: treat the input model file as a text protobuf format. If\n",
"\t\t\tnot specified, the Model Optimizer treats it as a binary file by default.\n",
"\t\t\t\n",
" --input_checkpoint \n",
"\t\t\tTensorFlow*: variables file to load.\n",
" --input_meta_graph \n",
"\t\t\tTensorflow*: a file with a meta-graph of the model before freezing\n",
" --saved_model_dir \n",
"\t\t\tTensorFlow*: directory with a model in SavedModel format of TensorFlow\n",
"\t\t\t1.x or 2.x version.\n",
" --saved_model_tags \n",
"\t\t\tGroup of tag(s) of the MetaGraphDef to load, in string format, separated\n",
"\t\t\tby ','. For tag-set contains multiple tags, all tags must be passed in.\n",
"\t\t\t\n",
" --tensorflow_custom_operations_config_update \n",
"\t\t\tTensorFlow*: update the configuration file with node name patterns\n",
"\t\t\twith input/output nodes information.\n",
" --tensorflow_object_detection_api_pipeline_config \n",
"\t\t\tTensorFlow*: path to the pipeline configuration file used to generate\n",
"\t\t\tmodel created with help of Object Detection API.\n",
" --tensorboard_logdir \n",
"\t\t\tTensorFlow*: dump the input graph to a given directory that should be\n",
"\t\t\tused with TensorBoard.\n",
" --tensorflow_custom_layer_libraries \n",
"\t\t\tTensorFlow*: comma separated list of shared libraries with TensorFlow*\n",
"\t\t\tcustom operations implementation.\n",
"\n",
"MXNet-specific parameters:\n",
" --input_symbol \n",
"\t\t\tSymbol file (for example, model-symbol.json) that contains a topology\n",
"\t\t\tstructure and layer attributes\n",
" --nd_prefix_name \n",
"\t\t\tPrefix name for args.nd and argx.nd files.\n",
" --pretrained_model_name \n",
"\t\t\tName of a pretrained MXNet model without extension and epoch number.\n",
"\t\t\tThis model will be merged with args.nd and argx.nd files\n",
" --save_params_from_nd \n",
"\t\t\tEnable saving built parameters file from .nd files\n",
" --legacy_mxnet_model \n",
"\t\t\tEnable MXNet loader to make a model compatible with the latest MXNet\n",
"\t\t\tversion. Use only if your model was trained with MXNet version lower\n",
"\t\t\tthan 1.0.0\n",
" --enable_ssd_gluoncv \n",
"\t\t\tEnable pattern matchers replacers for converting gluoncv ssd topologies.\n",
"\t\t\t\n",
"\n",
"Caffe*-specific parameters:\n",
" --input_proto \n",
"\t\t\tDeploy-ready prototxt file that contains a topology structure and\n",
"\t\t\tlayer attributes\n",
" --caffe_parser_path \n",
"\t\t\tPath to Python Caffe* parser generated from caffe.proto\n",
" --k \n",
"\t\t\tPath to CustomLayersMapping.xml to register custom layers\n",
" --disable_omitting_optional \n",
"\t\t\tDisable omitting optional attributes to be used for custom layers.\n",
"\t\t\tUse this option if you want to transfer all attributes of a custom layer\n",
"\t\t\tto IR. Default behavior is to transfer the attributes with default values\n",
"\t\t\tand the attributes defined by the user to IR.\n",
" --enable_flattening_nested_params \n",
"\t\t\tEnable flattening optional params to be used for custom layers. Use\n",
"\t\t\tthis option if you want to transfer attributes of a custom layer to IR\n",
"\t\t\twith flattened nested parameters. Default behavior is to transfer\n",
"\t\t\tthe attributes without flattening nested parameters.\n",
"\n",
"Kaldi-specific parameters:\n",
" --counts \n",
"\t\t\tPath to the counts file\n",
" --remove_output_softmax \n",
"\t\t\tRemoves the SoftMax layer that is the output layer\n",
" --remove_memory \n",
"\t\t\tRemoves the Memory layer and use additional inputs outputs instead\n",
"\t\t\t\n",
"\n"
]
}
],
"source": [
"# Python conversion API parameters description\n",
"from openvino.tools import mo\n",
"\n",
"\n",
"mo.convert_model(help=True)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Fetching example models\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"This notebook uses two models for conversion examples:\n",
"\n",
"* [Distilbert](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) NLP model from Hugging Face\n",
"* [Resnet50](https://pytorch.org/vision/stable/models/generated/torchvision.models.resnet50.html#torchvision.models.ResNet50_Weights) CV classification model from torchvision"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"from pathlib import Path\n",
"\n",
"# create a directory for models files\n",
"MODEL_DIRECTORY_PATH = Path(\"model\")\n",
"MODEL_DIRECTORY_PATH.mkdir(exist_ok=True)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Fetch [distilbert](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) NLP model from Hugging Face and export it in ONNX format:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-10-30 09:15:39.568630: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
"2023-10-30 09:15:39.665054: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
"To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
"2023-10-30 09:15:41.296271: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n",
"/home/ea/work/ov_venv/lib/python3.8/site-packages/torch/cuda/__init__.py:138: UserWarning: CUDA initialization: The NVIDIA driver on your system is too old (found version 11080). Please update your GPU driver by downloading and installing a new version from the URL: http://www.nvidia.com/Download/index.aspx Alternatively, go to: https://pytorch.org to install a PyTorch version that has been compiled with your version of the CUDA driver. (Triggered internally at ../c10/cuda/CUDAFunctions.cpp:108.)\n",
" return torch._C._cuda_getDeviceCount() > 0\n",
"/home/ea/work/ov_venv/lib/python3.8/site-packages/transformers/models/distilbert/modeling_distilbert.py:223: TracerWarning: torch.tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect.\n",
" mask, torch.tensor(torch.finfo(scores.dtype).min)\n"
]
},
{
"data": {
"text/plain": [
"(['input_ids', 'attention_mask'], ['logits'])"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from transformers import AutoModelForSequenceClassification, AutoTokenizer\n",
"from transformers.onnx import export, FeaturesManager\n",
"\n",
"\n",
"ONNX_NLP_MODEL_PATH = MODEL_DIRECTORY_PATH / \"distilbert.onnx\"\n",
"\n",
"# download model\n",
"hf_model = AutoModelForSequenceClassification.from_pretrained(\"distilbert-base-uncased-finetuned-sst-2-english\")\n",
"# initialize tokenizer\n",
"tokenizer = AutoTokenizer.from_pretrained(\"distilbert-base-uncased-finetuned-sst-2-english\")\n",
"\n",
"# get model onnx config function for output feature format sequence-classification\n",
"model_kind, model_onnx_config = FeaturesManager.check_supported_model_or_raise(hf_model, feature=\"sequence-classification\")\n",
"# fill onnx config based on pytorch model config\n",
"onnx_config = model_onnx_config(hf_model.config)\n",
"\n",
"# export to onnx format\n",
"export(\n",
" preprocessor=tokenizer,\n",
" model=hf_model,\n",
" config=onnx_config,\n",
" opset=onnx_config.default_onnx_opset,\n",
" output=ONNX_NLP_MODEL_PATH,\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Fetch [Resnet50](https://pytorch.org/vision/stable/models/generated/torchvision.models.resnet50.html#torchvision.models.ResNet50_Weights) CV classification model from torchvision:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Downloading: \"https://download.pytorch.org/models/resnet50-11ad3fa6.pth\" to /home/ea/.cache/torch/hub/checkpoints/resnet50-11ad3fa6.pth\n",
"100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 97.8M/97.8M [00:06<00:00, 14.9MB/s]\n"
]
},
{
"data": {
"text/plain": [
"ResNet(\n",
" (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)\n",
" (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)\n",
" (layer1): Sequential(\n",
" (0): Bottleneck(\n",
" (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" (downsample): Sequential(\n",
" (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" )\n",
" )\n",
" (1): Bottleneck(\n",
" (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" )\n",
" (2): Bottleneck(\n",
" (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" )\n",
" )\n",
" (layer2): Sequential(\n",
" (0): Bottleneck(\n",
" (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" (downsample): Sequential(\n",
" (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
" (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" )\n",
" )\n",
" (1): Bottleneck(\n",
" (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" )\n",
" (2): Bottleneck(\n",
" (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" )\n",
" (3): Bottleneck(\n",
" (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" )\n",
" )\n",
" (layer3): Sequential(\n",
" (0): Bottleneck(\n",
" (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" (downsample): Sequential(\n",
" (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
" (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" )\n",
" )\n",
" (1): Bottleneck(\n",
" (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" )\n",
" (2): Bottleneck(\n",
" (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" )\n",
" (3): Bottleneck(\n",
" (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" )\n",
" (4): Bottleneck(\n",
" (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" )\n",
" (5): Bottleneck(\n",
" (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" )\n",
" )\n",
" (layer4): Sequential(\n",
" (0): Bottleneck(\n",
" (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" (downsample): Sequential(\n",
" (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
" (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" )\n",
" )\n",
" (1): Bottleneck(\n",
" (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" )\n",
" (2): Bottleneck(\n",
" (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace=True)\n",
" )\n",
" )\n",
" (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))\n",
" (fc): Linear(in_features=2048, out_features=1000, bias=True)\n",
")"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from torchvision.models import resnet50, ResNet50_Weights\n",
"\n",
"\n",
"# create model object\n",
"pytorch_model = resnet50(weights=ResNet50_Weights.DEFAULT)\n",
"# switch model from training to inference mode\n",
"pytorch_model.eval()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Convert PyTorch model to ONNX format:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ONNX model exported to model/resnet.onnx\n"
]
}
],
"source": [
"import torch\n",
"import warnings\n",
"\n",
"\n",
"ONNX_CV_MODEL_PATH = MODEL_DIRECTORY_PATH / \"resnet.onnx\"\n",
"\n",
"if ONNX_CV_MODEL_PATH.exists():\n",
" print(f\"ONNX model {ONNX_CV_MODEL_PATH} already exists.\")\n",
"else:\n",
" with warnings.catch_warnings():\n",
" warnings.filterwarnings(\"ignore\")\n",
" torch.onnx.export(model=pytorch_model, args=torch.randn(1, 3, 780, 520), f=ONNX_CV_MODEL_PATH)\n",
" print(f\"ONNX model exported to {ONNX_CV_MODEL_PATH}\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Basic conversion\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"To convert a model to OpenVINO IR, use the following command:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression explicitly by adding argument --compress_to_fp16=False.\n",
"Find more information about compression to FP16 at https://docs.openvino.ai/2024/openvino-workflow/model-preparation/conversion-parameters.html\n",
"[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.\n",
"Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/2023.3/openvino_2_0_transition_guide.html\n",
"[ SUCCESS ] Generated IR version 11 model.\n",
"[ SUCCESS ] XML file: /home/ea/work/openvino_notebooks/notebooks/convert-to-openvino/model/distilbert.xml\n",
"[ SUCCESS ] BIN file: /home/ea/work/openvino_notebooks/notebooks/convert-to-openvino/model/distilbert.bin\n"
]
}
],
"source": [
"# Model Optimizer CLI\n",
"\n",
"! mo --input_model model/distilbert.onnx --output_dir model"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
]
}
],
"source": [
"# Python conversion API\n",
"from openvino.tools import mo\n",
"\n",
"# mo.convert_model returns an openvino.runtime.Model object\n",
"ov_model = mo.convert_model(ONNX_NLP_MODEL_PATH)\n",
"\n",
"# then model can be serialized to *.xml & *.bin files\n",
"from openvino.runtime import serialize\n",
"\n",
"serialize(ov_model, xml_path=MODEL_DIRECTORY_PATH / \"distilbert.xml\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Model conversion parameters\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Both Python conversion API and Model Optimizer command-line tool provide the following capabilities:\n",
"* overriding original input shapes for model conversion with `input` and `input_shape` parameters. [Setting Input Shapes guide](https://docs.openvino.ai/2024/openvino-workflow/model-preparation/setting-input-shapes.html).\n",
"* cutting off unwanted parts of a model (such as unsupported operations and training sub-graphs) using the `input` and `output` parameters to define new inputs and outputs of the converted model. [Cutting Off Parts of a Model guide](https://docs.openvino.ai/2023.3/openvino_docs_MO_DG_prepare_model_convert_model_Cutting_Model.html).\n",
"* inserting additional input pre-processing sub-graphs into the converted model by using the `mean_values`, `scales_values`, `layout`, and other parameters. [Embedding Preprocessing Computation article](https://docs.openvino.ai/2023.3/openvino_docs_MO_DG_Additional_Optimization_Use_Cases.html).\n",
"* compressing the model weights (for example, weights for convolutions and matrix multiplications) to FP16 data type using `compress_to_fp16` compression parameter. [Compression of a Model to FP16 guide](https://docs.openvino.ai/2024/openvino-workflow/model-preparation/conversion-parameters.html).\n",
"\n",
"If the out-of-the-box conversion (only the `input_model` parameter is specified) is not successful, it may be required to use the parameters mentioned above to override input shapes and cut the model."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Setting Input Shapes\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Model conversion is supported for models with dynamic input shapes that contain undefined dimensions. However, if the shape of data is not going to change from one inference request to another, it is recommended to set up static shapes (when all dimensions are fully defined) for the inputs. Doing it at this stage, instead of during inference in runtime, can be beneficial in terms of performance and memory consumption. To set up static shapes, model conversion API provides the `input` and `input_shape` parameters.\n",
"\n",
"For more information refer to [Setting Input Shapes guide](https://docs.openvino.ai/2024/openvino-workflow/model-preparation/setting-input-shapes.html)."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression explicitly by adding argument --compress_to_fp16=False.\n",
"Find more information about compression to FP16 at https://docs.openvino.ai/2024/openvino-workflow/model-preparation/conversion-parameters.html\n",
"[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.\n",
"Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/2023.3/openvino_2_0_transition_guide.html\n",
"[ SUCCESS ] Generated IR version 11 model.\n",
"[ SUCCESS ] XML file: /home/ea/work/openvino_notebooks/notebooks/convert-to-openvino/model/distilbert.xml\n",
"[ SUCCESS ] BIN file: /home/ea/work/openvino_notebooks/notebooks/convert-to-openvino/model/distilbert.bin\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression explicitly by adding argument --compress_to_fp16=False.\n",
"Find more information about compression to FP16 at https://docs.openvino.ai/2024/openvino-workflow/model-preparation/conversion-parameters.html\n",
"[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.\n",
"Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/2023.3/openvino_2_0_transition_guide.html\n",
"[ SUCCESS ] Generated IR version 11 model.\n",
"[ SUCCESS ] XML file: /home/ea/work/openvino_notebooks/notebooks/convert-to-openvino/model/distilbert.xml\n",
"[ SUCCESS ] BIN file: /home/ea/work/openvino_notebooks/notebooks/convert-to-openvino/model/distilbert.bin\n"
]
}
],
"source": [
"# Model Optimizer CLI\n",
"\n",
"! mo --input_model model/distilbert.onnx --input input_ids,attention_mask --input_shape [1,128],[1,128] --output_dir model\n",
"\n",
"# alternatively\n",
"! mo --input_model model/distilbert.onnx --input input_ids[1,128],attention_mask[1,128] --output_dir model"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# Python conversion API\n",
"from openvino.tools import mo\n",
"\n",
"\n",
"ov_model = mo.convert_model(\n",
" ONNX_NLP_MODEL_PATH,\n",
" input=[\"input_ids\", \"attention_mask\"],\n",
" input_shape=[[1, 128], [1, 128]],\n",
")\n",
"\n",
"# alternatively specify input shapes, using the input parameter\n",
"ov_model = mo.convert_model(ONNX_NLP_MODEL_PATH, input=[(\"input_ids\", [1, 128]), (\"attention_mask\", [1, 128])])"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"The input_shape parameter allows overriding original input shapes to ones compatible with a given model. Dynamic shapes, i.e. with dynamic dimensions, can be replaced in the original model with static shapes for the converted model, and vice versa. The dynamic dimension can be marked in the model conversion API parameter as `-1` or `?`. For example, launch model conversion for the ONNX Bert model and specify a dynamic sequence length dimension for inputs:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression explicitly by adding argument --compress_to_fp16=False.\n",
"Find more information about compression to FP16 at https://docs.openvino.ai/2024/openvino-workflow/model-preparation/conversion-parameters.html\n",
"[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.\n",
"Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/2023.3/openvino_2_0_transition_guide.html\n",
"[ SUCCESS ] Generated IR version 11 model.\n",
"[ SUCCESS ] XML file: /home/ea/work/openvino_notebooks/notebooks/convert-to-openvino/model/distilbert.xml\n",
"[ SUCCESS ] BIN file: /home/ea/work/openvino_notebooks/notebooks/convert-to-openvino/model/distilbert.bin\n"
]
}
],
"source": [
"# Model Optimizer CLI\n",
"\n",
"! mo --input_model model/distilbert.onnx --input input_ids,attention_mask --input_shape [1,-1],[1,-1] --output_dir model"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"# Python conversion API\n",
"from openvino.tools import mo\n",
"\n",
"\n",
"ov_model = mo.convert_model(\n",
" ONNX_NLP_MODEL_PATH,\n",
" input=[\"input_ids\", \"attention_mask\"],\n",
" input_shape=[[1, -1], [1, -1]],\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"To optimize memory consumption for models with undefined dimensions in runtime, model conversion API provides the capability to define boundaries of dimensions. The boundaries of undefined dimensions can be specified with ellipsis. For example, launch model conversion for the ONNX Bert model and specify a boundary for the sequence length dimension:"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression explicitly by adding argument --compress_to_fp16=False.\n",
"Find more information about compression to FP16 at https://docs.openvino.ai/2024/openvino-workflow/model-preparation/conversion-parameters.html\n",
"[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.\n",
"Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/2023.3/openvino_2_0_transition_guide.html\n",
"[ SUCCESS ] Generated IR version 11 model.\n",
"[ SUCCESS ] XML file: /home/ea/work/openvino_notebooks/notebooks/convert-to-openvino/model/distilbert.xml\n",
"[ SUCCESS ] BIN file: /home/ea/work/openvino_notebooks/notebooks/convert-to-openvino/model/distilbert.bin\n"
]
}
],
"source": [
"# Model Optimizer CLI\n",
"\n",
"! mo --input_model model/distilbert.onnx --input input_ids,attention_mask --input_shape [1,10..128],[1,10..128] --output_dir model"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"# Python conversion API\n",
"from openvino.tools import mo\n",
"\n",
"\n",
"ov_model = mo.convert_model(\n",
" ONNX_NLP_MODEL_PATH,\n",
" input=[\"input_ids\", \"attention_mask\"],\n",
" input_shape=[[1, \"10..128\"], [1, \"10..128\"]],\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Cutting Off Parts of a Model\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"The following examples show when model cutting is useful or even required:\n",
"\n",
"* A model has pre- or post-processing parts that cannot be translated to existing OpenVINO operations.\n",
"* A model has a training part that is convenient to be kept in the model but not used during inference.\n",
"* A model is too complex to be converted at once because it contains many unsupported operations that cannot be easily implemented as custom layers.\n",
"* A problem occurs with model conversion or inference in OpenVINO Runtime. To identify the issue, limit the conversion scope by an iterative search for problematic areas in the model.\n",
"* A single custom layer or a combination of custom layers is isolated for debugging purposes.\n",
"\n",
"For a more detailed description, refer to the [Cutting Off Parts of a Model guide](https://docs.openvino.ai/2023.3/openvino_docs_MO_DG_prepare_model_convert_model_Cutting_Model.html)."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression explicitly by adding argument --compress_to_fp16=False.\n",
"Find more information about compression to FP16 at https://docs.openvino.ai/2024/openvino-workflow/model-preparation/conversion-parameters.html\n",
"[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.\n",
"Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/2023.3/openvino_2_0_transition_guide.html\n",
"[ SUCCESS ] Generated IR version 11 model.\n",
"[ SUCCESS ] XML file: /home/ea/work/openvino_notebooks/notebooks/convert-to-openvino/model/distilbert.xml\n",
"[ SUCCESS ] BIN file: /home/ea/work/openvino_notebooks/notebooks/convert-to-openvino/model/distilbert.bin\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression explicitly by adding argument --compress_to_fp16=False.\n",
"Find more information about compression to FP16 at https://docs.openvino.ai/2024/openvino-workflow/model-preparation/conversion-parameters.html\n",
"[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.\n",
"Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/2023.3/openvino_2_0_transition_guide.html\n",
"[ SUCCESS ] Generated IR version 11 model.\n",
"[ SUCCESS ] XML file: /home/ea/work/openvino_notebooks/notebooks/convert-to-openvino/model/distilbert.xml\n",
"[ SUCCESS ] BIN file: /home/ea/work/openvino_notebooks/notebooks/convert-to-openvino/model/distilbert.bin\n"
]
}
],
"source": [
"# Model Optimizer CLI\n",
"\n",
"# cut at the end\n",
"! mo --input_model model/distilbert.onnx --output /classifier/Gemm --output_dir model\n",
"\n",
"\n",
"# cut from the beginning\n",
"! mo --input_model model/distilbert.onnx --input /distilbert/embeddings/LayerNorm/Add_1,attention_mask --output_dir model"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"# Python conversion API\n",
"from openvino.tools import mo\n",
"\n",
"\n",
"# cut at the end\n",
"ov_model = mo.convert_model(ONNX_NLP_MODEL_PATH, output=\"/classifier/Gemm\")\n",
"\n",
"# cut from the beginning\n",
"ov_model = mo.convert_model(\n",
" ONNX_NLP_MODEL_PATH,\n",
" input=[\"/distilbert/embeddings/LayerNorm/Add_1\", \"attention_mask\"],\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Embedding Preprocessing Computation\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Input data for inference can be different from the training dataset and requires additional preprocessing before inference. To accelerate the whole pipeline, including preprocessing and inference, model conversion API provides special parameters such as `mean_values`, `scale_values`, `reverse_input_channels`, and `layout`. Based on these parameters, model conversion API generates OpenVINO IR with additionally inserted sub-graphs to perform the defined preprocessing. This preprocessing block can perform mean-scale normalization of input data, reverting data along channel dimension, and changing the data layout. For more information on preprocessing, refer to the [Embedding Preprocessing Computation article](https://docs.openvino.ai/2023.3/openvino_docs_MO_DG_Additional_Optimization_Use_Cases.html)."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Specifying Layout\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Layout defines the meaning of dimensions in a shape and can be specified for both inputs and outputs. Some preprocessing requires to set input layouts, for example, setting a batch, applying mean or scales, and reversing input channels (BGR<->RGB). For the layout syntax, check the [Layout API overview](https://docs.openvino.ai/2024/openvino-workflow/running-inference/optimize-inference/optimize-preprocessing/layout-api-overview.html). To specify the layout, you can use the layout option followed by the layout value.\n",
"\n",
"The following command specifies the `NCHW` layout for a Pytorch Resnet50 model that was exported to the ONNX format:"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression explicitly by adding argument --compress_to_fp16=False.\n",
"Find more information about compression to FP16 at https://docs.openvino.ai/2024/openvino-workflow/model-preparation/conversion-parameters.html\n",
"[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.\n",
"Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/2023.3/openvino_2_0_transition_guide.html\n",
"[ SUCCESS ] Generated IR version 11 model.\n",
"[ SUCCESS ] XML file: /home/ea/work/openvino_notebooks/notebooks/convert-to-openvino/model/resnet.xml\n",
"[ SUCCESS ] BIN file: /home/ea/work/openvino_notebooks/notebooks/convert-to-openvino/model/resnet.bin\n"
]
}
],
"source": [
"# Model Optimizer CLI\n",
"\n",
"! mo --input_model model/resnet.onnx --layout nchw --output_dir model"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"# Python conversion API\n",
"from openvino.tools import mo\n",
"\n",
"\n",
"ov_model = mo.convert_model(ONNX_CV_MODEL_PATH, layout=\"nchw\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Changing Model Layout\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Changing the model layout may be necessary if it differs from the one presented by input data. Use either `layout` or `source_layout` with `target_layout` to change the layout."
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression explicitly by adding argument --compress_to_fp16=False.\n",
"Find more information about compression to FP16 at https://docs.openvino.ai/2024/openvino-workflow/model-preparation/conversion-parameters.html\n",
"[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.\n",
"Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/2023.3/openvino_2_0_transition_guide.html\n",
"[ SUCCESS ] Generated IR version 11 model.\n",
"[ SUCCESS ] XML file: /home/ea/work/openvino_notebooks/notebooks/convert-to-openvino/model/resnet.xml\n",
"[ SUCCESS ] BIN file: /home/ea/work/openvino_notebooks/notebooks/convert-to-openvino/model/resnet.bin\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression explicitly by adding argument --compress_to_fp16=False.\n",
"Find more information about compression to FP16 at https://docs.openvino.ai/2024/openvino-workflow/model-preparation/conversion-parameters.html\n",
"[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.\n",
"Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/2023.3/openvino_2_0_transition_guide.html\n",
"[ SUCCESS ] Generated IR version 11 model.\n",
"[ SUCCESS ] XML file: /home/ea/work/openvino_notebooks/notebooks/convert-to-openvino/model/resnet.xml\n",
"[ SUCCESS ] BIN file: /home/ea/work/openvino_notebooks/notebooks/convert-to-openvino/model/resnet.bin\n"
]
}
],
"source": [
"# Model Optimizer CLI\n",
"\n",
"! mo --input_model model/resnet.onnx --layout \"nchw->nhwc\" --output_dir model\n",
"\n",
"# alternatively use source_layout and target_layout parameters\n",
"! mo --input_model model/resnet.onnx --source_layout nchw --target_layout nhwc --output_dir model"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"# Python conversion API\n",
"from openvino.tools import mo\n",
"\n",
"\n",
"ov_model = mo.convert_model(ONNX_CV_MODEL_PATH, layout=\"nchw->nhwc\")\n",
"\n",
"# alternatively use source_layout and target_layout parameters\n",
"ov_model = mo.convert_model(ONNX_CV_MODEL_PATH, source_layout=\"nchw\", target_layout=\"nhwc\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Specifying Mean and Scale Values\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Model conversion API has the following parameters to specify the values: `mean_values`, `scale_values`, `scale`. Using these parameters, model conversion API embeds the corresponding preprocessing block for mean-value normalization of the input data and optimizes this block so that the preprocessing takes negligible time for inference."
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression explicitly by adding argument --compress_to_fp16=False.\n",
"Find more information about compression to FP16 at https://docs.openvino.ai/2024/openvino-workflow/model-preparation/conversion-parameters.html\n",
"[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.\n",
"Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/2023.3/openvino_2_0_transition_guide.html\n",
"[ SUCCESS ] Generated IR version 11 model.\n",
"[ SUCCESS ] XML file: /home/ea/work/openvino_notebooks/notebooks/convert-to-openvino/model/resnet.xml\n",
"[ SUCCESS ] BIN file: /home/ea/work/openvino_notebooks/notebooks/convert-to-openvino/model/resnet.bin\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression explicitly by adding argument --compress_to_fp16=False.\n",
"Find more information about compression to FP16 at https://docs.openvino.ai/2024/openvino-workflow/model-preparation/conversion-parameters.html\n",
"[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.\n",
"Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/2023.3/openvino_2_0_transition_guide.html\n",
"[ SUCCESS ] Generated IR version 11 model.\n",
"[ SUCCESS ] XML file: /home/ea/work/openvino_notebooks/notebooks/convert-to-openvino/model/resnet.xml\n",
"[ SUCCESS ] BIN file: /home/ea/work/openvino_notebooks/notebooks/convert-to-openvino/model/resnet.bin\n"
]
}
],
"source": [
"# Model Optimizer CLI\n",
"\n",
"! mo --input_model model/resnet.onnx --mean_values [123,117,104] --scale 255 --output_dir model\n",
"\n",
"! mo --input_model model/resnet.onnx --mean_values [123,117,104] --scale_values [255,255,255] --output_dir model"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"# Python conversion API\n",
"from openvino.tools import mo\n",
"\n",
"\n",
"ov_model = mo.convert_model(ONNX_CV_MODEL_PATH, mean_values=[123, 117, 104], scale=255)\n",
"\n",
"ov_model = mo.convert_model(ONNX_CV_MODEL_PATH, mean_values=[123, 117, 104], scale_values=[255, 255, 255])"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Reversing Input Channels\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Sometimes, input images for your application can be of the `RGB` (or `BGR`) format, and the model is trained on images of the `BGR` (or `RGB`) format, which is in the opposite order of color channels. In this case, it is important to preprocess the input images by reverting the color channels before inference."
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression explicitly by adding argument --compress_to_fp16=False.\n",
"Find more information about compression to FP16 at https://docs.openvino.ai/2024/openvino-workflow/model-preparation/conversion-parameters.html\n",
"[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.\n",
"Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/2023.3/openvino_2_0_transition_guide.html\n",
"[ SUCCESS ] Generated IR version 11 model.\n",
"[ SUCCESS ] XML file: /home/ea/work/openvino_notebooks/notebooks/convert-to-openvino/model/resnet.xml\n",
"[ SUCCESS ] BIN file: /home/ea/work/openvino_notebooks/notebooks/convert-to-openvino/model/resnet.bin\n"
]
}
],
"source": [
"# Model Optimizer CLI\n",
"\n",
"! mo --input_model model/resnet.onnx --reverse_input_channels --output_dir model"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"# Python conversion API\n",
"from openvino.tools import mo\n",
"\n",
"\n",
"ov_model = mo.convert_model(ONNX_CV_MODEL_PATH, reverse_input_channels=True)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Compressing a Model to FP16\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Optionally all relevant floating-point weights can be compressed to FP16 data type during the model conversion, creating a compressed FP16 model. This smaller model occupies about half of the original space in the file system. While the compression may introduce a drop in accuracy, for most models, this decrease is negligible."
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression explicitly by adding argument --compress_to_fp16=False.\n",
"Find more information about compression to FP16 at https://docs.openvino.ai/2024/openvino-workflow/model-preparation/conversion-parameters.html\n",
"[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.\n",
"Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/2023.3/openvino_2_0_transition_guide.html\n",
"[ SUCCESS ] Generated IR version 11 model.\n",
"[ SUCCESS ] XML file: /home/ea/work/openvino_notebooks/notebooks/convert-to-openvino/model/resnet.xml\n",
"[ SUCCESS ] BIN file: /home/ea/work/openvino_notebooks/notebooks/convert-to-openvino/model/resnet.bin\n"
]
}
],
"source": [
"# Model Optimizer CLI\n",
"\n",
"! mo --input_model model/resnet.onnx --compress_to_fp16=True --output_dir model"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"# Python conversion API\n",
"from openvino.tools import mo\n",
"\n",
"\n",
"ov_model = mo.convert_model(ONNX_CV_MODEL_PATH, compress_to_fp16=True)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Convert Models Represented as Python Objects\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Python conversion API can pass Python model objects, such as a Pytorch model or TensorFlow Keras model directly, without saving them into files and without leaving the training environment (Jupyter Notebook or training scripts)."
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"WARNING:tensorflow:Please fix your imports. Module tensorflow.python.training.tracking.base has been moved to tensorflow.python.trackable.base. The old module will be deleted in version 2.11.\n"
]
}
],
"source": [
"# Python conversion API\n",
"from openvino.tools import mo\n",
"\n",
"\n",
"ov_model = mo.convert_model(pytorch_model)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"`convert_model()` accepts all parameters available in the MO command-line tool. Parameters can be specified by Python classes or string analogs, similar to the command-line tool."
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"# Python conversion API\n",
"from openvino.tools import mo\n",
"\n",
"\n",
"ov_model = mo.convert_model(\n",
" pytorch_model,\n",
" input_shape=[1, 3, 100, 100],\n",
" mean_values=[127, 127, 127],\n",
" layout=\"nchw\",\n",
")\n",
"\n",
"ov_model = mo.convert_model(pytorch_model, source_layout=\"nchw\", target_layout=\"nhwc\")\n",
"\n",
"ov_model = mo.convert_model(pytorch_model, compress_to_fp16=True, reverse_input_channels=True)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
},
"openvino_notebooks": {
"imageUrl": "",
"tags": {
"categories": [
"Convert",
"API Overview"
],
"libraries": [],
"other": [],
"tasks": [
"Image Classification",
"Text Classification"
]
}
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|