Spaces:
Runtime error
Runtime error
File size: 32,503 Bytes
db5855f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# OpenVINO™ Model conversion\n",
"\n",
"This notebook shows how to convert a model from original framework format to OpenVINO Intermediate Representation (IR).\n",
"\n",
"\n",
"#### Table of contents:\n",
"\n",
"- [OpenVINO IR format](#OpenVINO-IR-format)\n",
"- [Fetching example models](#Fetching-example-models)\n",
"- [Conversion](#Conversion)\n",
" - [Setting Input Shapes](#Setting-Input-Shapes)\n",
" - [Compressing a Model to FP16](#Compressing-a-Model-to-FP16)\n",
" - [Convert Models from memory](#Convert-Models-from-memory)\n",
"- [Migration from Legacy conversion API](#Migration-from-Legacy-conversion-API)\n",
" - [Specifying Layout](#Specifying-Layout)\n",
" - [Changing Model Layout](#Changing-Model-Layout)\n",
" - [Specifying Mean and Scale Values](#Specifying-Mean-and-Scale-Values)\n",
" - [Reversing Input Channels](#Reversing-Input-Channels)\n",
" - [Cutting Off Parts of a Model](#Cutting-Off-Parts-of-a-Model)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Required imports. Please execute this cell first.\n",
"%pip install --upgrade pip\n",
"%pip install -q --extra-index-url https://download.pytorch.org/whl/cpu \\\n",
"\"openvino-dev>=2024.0.0\" \"requests\" \"tqdm\" \"transformers[onnx]>=4.31\" \"torch>=2.1\" \"torchvision\" \"tensorflow_hub\" \"tensorflow\""
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## OpenVINO IR format\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"OpenVINO [Intermediate Representation (IR)](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) is the proprietary model format of OpenVINO. It is produced after converting a model with model conversion API. Model conversion API translates the frequently used deep learning operations to their respective similar representation in OpenVINO and tunes them with the associated weights and biases from the trained model. The resulting IR contains two files: an `.xml` file, containing information about network topology, and a `.bin` file, containing the weights and biases binary data.\n",
"\n",
"There are two ways to convert a model from the original framework format to OpenVINO IR: Python conversion API and OVC command-line tool. You can choose one of them based on whichever is most convenient for you.\n",
"\n",
"OpenVINO conversion API supports next model formats: `PyTorch`, `TensorFlow`, `TensorFlow Lite`, `ONNX`, and `PaddlePaddle`. These model formats can be read, compiled, and converted to OpenVINO IR, either automatically or explicitly.\n",
"\n",
" For more details, refer to [Model Preparation](https://docs.openvino.ai/2024/openvino-workflow/model-preparation.html) documentation."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"usage: ovc INPUT_MODEL... [-h] [--output_model OUTPUT_MODEL]\n",
" [--compress_to_fp16 [True | False]] [--version] [--input INPUT]\n",
" [--output OUTPUT] [--extension EXTENSION] [--verbose]\n",
"\n",
"positional arguments:\n",
" INPUT_MODEL Input model file(s) from TensorFlow, ONNX,\n",
" PaddlePaddle. Use openvino.convert_model in Python to\n",
" convert models from PyTorch.\n",
"\n",
"optional arguments:\n",
" -h, --help show this help message and exit\n",
" --output_model OUTPUT_MODEL\n",
" This parameter is used to name output .xml/.bin files\n",
" with converted model.\n",
" --compress_to_fp16 [True | False]\n",
" Compress weights in output OpenVINO model to FP16. To\n",
" turn off compression use \"--compress_to_fp16=False\"\n",
" command line parameter. Default value is True.\n",
" --version Print ovc version and exit.\n",
" --input INPUT Information of model input required for model\n",
" conversion. This is a comma separated list with\n",
" optional input names and shapes. The order of inputs\n",
" in converted model will match the order of specified\n",
" inputs. The shape is specified as comma-separated\n",
" list. Example, to set `input_1` input with shape\n",
" [1,100] and `sequence_len` input with shape [1,?]:\n",
" \"input_1[1,100],sequence_len[1,?]\", where \"?\" is a\n",
" dynamic dimension, which means that such a dimension\n",
" can be specified later in the runtime. If the\n",
" dimension is set as an integer (like 100 in [1,100]),\n",
" such a dimension is not supposed to be changed later,\n",
" during a model conversion it is treated as a static\n",
" value. Example with unnamed inputs: \"[1,100],[1,?]\".\n",
" --output OUTPUT One or more comma-separated model outputs to be\n",
" preserved in the converted model. Other outputs are\n",
" removed. If `output` parameter is not specified then\n",
" all outputs from the original model are preserved. Do\n",
" not add :0 to the names for TensorFlow. The order of\n",
" outputs in the converted model is the same as the\n",
" order of specified names. Example: ovc model.onnx\n",
" output=out_1,out_2\n",
" --extension EXTENSION\n",
" Paths or a comma-separated list of paths to libraries\n",
" (.so or .dll) with extensions. To disable all\n",
" extensions including those that are placed at the\n",
" default location, pass an empty string.\n",
" --verbose Print detailed information about conversion.\n"
]
}
],
"source": [
"# OVC CLI tool parameters description\n",
"\n",
"! ovc --help"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Fetching example models\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"This notebook uses two models for conversion examples:\n",
"\n",
"* [Distilbert](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) NLP model from Hugging Face\n",
"* [Resnet50](https://pytorch.org/vision/stable/models/generated/torchvision.models.resnet50.html#torchvision.models.ResNet50_Weights) CV classification model from torchvision"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"from pathlib import Path\n",
"\n",
"# create a directory for models files\n",
"MODEL_DIRECTORY_PATH = Path(\"model\")\n",
"MODEL_DIRECTORY_PATH.mkdir(exist_ok=True)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Fetch [distilbert](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) NLP model from Hugging Face and export it in ONNX format:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import AutoModelForSequenceClassification, AutoTokenizer\n",
"from transformers.onnx import export, FeaturesManager\n",
"\n",
"ONNX_NLP_MODEL_PATH = MODEL_DIRECTORY_PATH / \"distilbert.onnx\"\n",
"\n",
"# download model\n",
"hf_model = AutoModelForSequenceClassification.from_pretrained(\"distilbert-base-uncased-finetuned-sst-2-english\")\n",
"# initialize tokenizer\n",
"tokenizer = AutoTokenizer.from_pretrained(\"distilbert-base-uncased-finetuned-sst-2-english\")\n",
"\n",
"# get model onnx config function for output feature format sequence-classification\n",
"model_kind, model_onnx_config = FeaturesManager.check_supported_model_or_raise(hf_model, feature=\"sequence-classification\")\n",
"# fill onnx config based on pytorch model config\n",
"onnx_config = model_onnx_config(hf_model.config)\n",
"\n",
"# export to onnx format\n",
"export(\n",
" preprocessor=tokenizer,\n",
" model=hf_model,\n",
" config=onnx_config,\n",
" opset=onnx_config.default_onnx_opset,\n",
" output=ONNX_NLP_MODEL_PATH,\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Fetch [Resnet50](https://pytorch.org/vision/stable/models/generated/torchvision.models.resnet50.html#torchvision.models.ResNet50_Weights) CV classification model from torchvision:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from torchvision.models import resnet50, ResNet50_Weights\n",
"\n",
"# create model object\n",
"pytorch_model = resnet50(weights=ResNet50_Weights.DEFAULT)\n",
"# switch model from training to inference mode\n",
"pytorch_model.eval()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Convert PyTorch model to ONNX format:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ONNX model exported to model/resnet.onnx\n"
]
}
],
"source": [
"import torch\n",
"import warnings\n",
"\n",
"ONNX_CV_MODEL_PATH = MODEL_DIRECTORY_PATH / \"resnet.onnx\"\n",
"\n",
"if ONNX_CV_MODEL_PATH.exists():\n",
" print(f\"ONNX model {ONNX_CV_MODEL_PATH} already exists.\")\n",
"else:\n",
" with warnings.catch_warnings():\n",
" warnings.filterwarnings(\"ignore\")\n",
" torch.onnx.export(model=pytorch_model, args=torch.randn(1, 3, 224, 224), f=ONNX_CV_MODEL_PATH)\n",
" print(f\"ONNX model exported to {ONNX_CV_MODEL_PATH}\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Conversion\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"To convert a model to OpenVINO IR, use the following API:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"model/distilbert.onnx\n"
]
}
],
"source": [
"import openvino as ov\n",
"\n",
"# ov.convert_model returns an openvino.runtime.Model object\n",
"print(ONNX_NLP_MODEL_PATH)\n",
"ov_model = ov.convert_model(ONNX_NLP_MODEL_PATH)\n",
"\n",
"# then model can be serialized to *.xml & *.bin files\n",
"ov.save_model(ov_model, MODEL_DIRECTORY_PATH / \"distilbert.xml\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression by removing argument \"compress_to_fp16\" or set it to false \"compress_to_fp16=False\".\n",
"Find more information about compression to FP16 at https://docs.openvino.ai/2024/openvino-workflow/model-preparation/conversion-parameters.html\n",
"[ SUCCESS ] XML file: model/distilbert.xml\n",
"[ SUCCESS ] BIN file: model/distilbert.bin\n"
]
}
],
"source": [
"! ovc model/distilbert.onnx --output_model model/distilbert.xml"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Setting Input Shapes\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Model conversion is supported for models with dynamic input shapes that contain undefined dimensions. However, if the shape of data is not going to change from one inference request to another, it is recommended to set up static shapes (when all dimensions are fully defined) for the inputs. Doing so at the model preparation stage, not at runtime, can be beneficial in terms of performance and memory consumption.\n",
"\n",
"For more information refer to [Setting Input Shapes](https://docs.openvino.ai/2024/openvino-workflow/model-preparation/setting-input-shapes.html) documentation."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"import openvino as ov\n",
"\n",
"ov_model = ov.convert_model(ONNX_NLP_MODEL_PATH, input=[(\"input_ids\", [1, 128]), (\"attention_mask\", [1, 128])])"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression by removing argument \"compress_to_fp16\" or set it to false \"compress_to_fp16=False\".\n",
"Find more information about compression to FP16 at https://docs.openvino.ai/2024/openvino-workflow/model-preparation/conversion-parameters.html\n",
"[ SUCCESS ] XML file: model/distilbert.xml\n",
"[ SUCCESS ] BIN file: model/distilbert.bin\n"
]
}
],
"source": [
"! ovc model/distilbert.onnx --input input_ids[1,128],attention_mask[1,128] --output_model model/distilbert.xml"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"The `input` parameter allows overriding original input shapes if it is supported by the model topology. Shapes with dynamic dimensions in the original model can be replaced with static shapes for the converted model, and vice versa. The dynamic dimension can be marked in model conversion API parameter as `-1` or `?` when using `ovc`:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"import openvino as ov\n",
"\n",
"ov_model = ov.convert_model(ONNX_NLP_MODEL_PATH, input=[(\"input_ids\", [1, -1]), (\"attention_mask\", [1, -1])])"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression by removing argument \"compress_to_fp16\" or set it to false \"compress_to_fp16=False\".\n",
"Find more information about compression to FP16 at https://docs.openvino.ai/2024/openvino-workflow/model-preparation/conversion-parameters.html\n",
"[ SUCCESS ] XML file: model/distilbert.xml\n",
"[ SUCCESS ] BIN file: model/distilbert.bin\n"
]
}
],
"source": [
"! ovc model/distilbert.onnx --input \"input_ids[1,?],attention_mask[1,?]\" --output_model model/distilbert.xml"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"To optimize memory consumption for models with undefined dimensions in runtime, model conversion API provides the capability to define boundaries of dimensions. The boundaries of undefined dimension can be specified with ellipsis in the command line or with `openvino.Dimension` class in Python. For example, launch model conversion for the ONNX Bert model and specify a boundary for the sequence length dimension:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"import openvino as ov\n",
"\n",
"\n",
"sequence_length_dim = ov.Dimension(10, 128)\n",
"\n",
"ov_model = ov.convert_model(\n",
" ONNX_NLP_MODEL_PATH,\n",
" input=[\n",
" (\"input_ids\", [1, sequence_length_dim]),\n",
" (\"attention_mask\", [1, sequence_length_dim]),\n",
" ],\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression by removing argument \"compress_to_fp16\" or set it to false \"compress_to_fp16=False\".\n",
"Find more information about compression to FP16 at https://docs.openvino.ai/2024/openvino-workflow/model-preparation/conversion-parameters.html\n",
"[ SUCCESS ] XML file: model/distilbert.xml\n",
"[ SUCCESS ] BIN file: model/distilbert.bin\n"
]
}
],
"source": [
"! ovc model/distilbert.onnx --input input_ids[1,10..128],attention_mask[1,10..128] --output_model model/distilbert.xml"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Compressing a Model to FP16\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"By default model weights compressed to FP16 format when saving OpenVINO model to IR. This saves up to 2x storage space for the model file and in most cases doesn't sacrifice model accuracy. Weight compression can be disabled by setting `compress_to_fp16` flag to `False`:"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"import openvino as ov\n",
"\n",
"ov_model = ov.convert_model(ONNX_NLP_MODEL_PATH)\n",
"ov.save_model(ov_model, MODEL_DIRECTORY_PATH / \"distilbert.xml\", compress_to_fp16=False)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ SUCCESS ] XML file: model/distilbert.xml\n",
"[ SUCCESS ] BIN file: model/distilbert.bin\n"
]
}
],
"source": [
"! ovc model/distilbert.onnx --output_model model/distilbert.xml --compress_to_fp16=False"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Convert Models from memory\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Model conversion API supports passing original framework Python object directly. More details can be found in [PyTorch](https://docs.openvino.ai/2024/openvino-workflow/model-preparation/convert-model-pytorch.html), [TensorFlow](https://docs.openvino.ai/2024/openvino-workflow/model-preparation/convert-model-tensorflow.html), [PaddlePaddle](https://docs.openvino.ai/2024/openvino-workflow/model-preparation/convert-model-paddle.html) frameworks conversion guides."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import openvino as ov\n",
"import torch\n",
"\n",
"example_input = torch.rand(1, 3, 224, 224)\n",
"\n",
"ov_model = ov.convert_model(pytorch_model, example_input=example_input, input=example_input.shape)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"import openvino as ov\n",
"import tensorflow_hub as hub\n",
"\n",
"os.environ[\"TFHUB_CACHE_DIR\"] = str(Path(\"./tfhub_modules\").resolve())\n",
"\n",
"model = hub.load(\"https://www.kaggle.com/models/google/movenet/frameworks/TensorFlow2/variations/singlepose-lightning/versions/4\")\n",
"movenet = model.signatures[\"serving_default\"]\n",
"\n",
"ov_model = ov.convert_model(movenet)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Migration from Legacy conversion API\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"In the 2023.1 OpenVINO release OpenVINO Model Conversion API was introduced with the corresponding Python API: `openvino.convert_model` method. `ovc` and `openvino.convert_model` represent a lightweight alternative of `mo` and `openvino.tools.mo.convert_model` which are considered legacy API now.\n",
"`mo.convert_model()` provides a wide range of preprocessing parameters. Most of these parameters have analogs in OVC or can be replaced with functionality from `ov.PrePostProcessor` class. Refer to [Optimize Preprocessing notebook](../optimize-preprocessing/optimize-preprocessing.ipynb) for more information about [Preprocessing API](https://docs.openvino.ai/2024/openvino-workflow/running-inference/optimize-inference/optimize-preprocessing.html). Here is the migration guide from legacy model preprocessing to Preprocessing API."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Specifying Layout\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Layout defines the meaning of dimensions in a shape and can be specified for both inputs and outputs. Some preprocessing requires to set input layouts, for example, setting a batch, applying mean or scales, and reversing input channels (BGR<->RGB). For the layout syntax, check the [Layout API overview](https://docs.openvino.ai/2024/openvino-workflow/running-inference/optimize-inference/optimize-preprocessing/layout-api-overview.html). To specify the layout, you can use the layout option followed by the layout value.\n",
"\n",
"The following example specifies the `NCHW` layout for a Pytorch Resnet50 model that was exported to the ONNX format:"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"# Converter API\n",
"import openvino as ov\n",
"\n",
"ov_model = ov.convert_model(ONNX_CV_MODEL_PATH)\n",
"\n",
"prep = ov.preprocess.PrePostProcessor(ov_model)\n",
"prep.input(\"input.1\").model().set_layout(ov.Layout(\"nchw\"))\n",
"ov_model = prep.build()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
]
}
],
"source": [
"# Legacy Model Optimizer API\n",
"from openvino.tools import mo\n",
"\n",
"ov_model = mo.convert_model(ONNX_CV_MODEL_PATH, layout=\"nchw\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Changing Model Layout\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Transposing of matrices/tensors is a typical operation in Deep Learning - you may have a BMP image `640x480`, which is an array of `{480, 640, 3}` elements, but Deep Learning model can require input with shape `{1, 3, 480, 640}`.\n",
"\n",
"Conversion can be done implicitly, using the layout of a user’s tensor and the layout of an original model:"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"# Converter API\n",
"import openvino as ov\n",
"\n",
"ov_model = ov.convert_model(ONNX_CV_MODEL_PATH)\n",
"\n",
"prep = ov.preprocess.PrePostProcessor(ov_model)\n",
"prep.input(\"input.1\").tensor().set_layout(ov.Layout(\"nhwc\"))\n",
"prep.input(\"input.1\").model().set_layout(ov.Layout(\"nchw\"))\n",
"ov_model = prep.build()"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"# Legacy Model Optimizer API\n",
"from openvino.tools import mo\n",
"\n",
"ov_model = mo.convert_model(ONNX_CV_MODEL_PATH, layout=\"nchw->nhwc\")\n",
"\n",
"# alternatively use source_layout and target_layout parameters\n",
"ov_model = mo.convert_model(ONNX_CV_MODEL_PATH, source_layout=\"nchw\", target_layout=\"nhwc\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Specifying Mean and Scale Values\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Using Preprocessing API `mean` and `scale` values can be set. Using these API, model embeds the corresponding preprocessing block for mean-value normalization of the input data and optimizes this block. Refer to [Optimize Preprocessing notebook](../optimize-preprocessing/optimize-preprocessing.ipynb) for more examples."
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"# Converter API\n",
"import openvino as ov\n",
"\n",
"ov_model = ov.convert_model(ONNX_CV_MODEL_PATH)\n",
"\n",
"prep = ov.preprocess.PrePostProcessor(ov_model)\n",
"prep.input(\"input.1\").tensor().set_layout(ov.Layout(\"nchw\"))\n",
"prep.input(\"input.1\").preprocess().mean([255 * x for x in [0.485, 0.456, 0.406]])\n",
"prep.input(\"input.1\").preprocess().scale([255 * x for x in [0.229, 0.224, 0.225]])\n",
"\n",
"ov_model = prep.build()"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"# Legacy Model Optimizer API\n",
"from openvino.tools import mo\n",
"\n",
"\n",
"ov_model = mo.convert_model(\n",
" ONNX_CV_MODEL_PATH,\n",
" mean_values=[255 * x for x in [0.485, 0.456, 0.406]],\n",
" scale_values=[255 * x for x in [0.229, 0.224, 0.225]],\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Reversing Input Channels\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Sometimes, input images for your application can be of the `RGB` (or `BGR`) format, and the model is trained on images of the `BGR` (or `RGB`) format, which is in the opposite order of color channels. In this case, it is important to preprocess the input images by reverting the color channels before inference."
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"# Converter API\n",
"import openvino as ov\n",
"\n",
"ov_model = ov.convert_model(ONNX_CV_MODEL_PATH)\n",
"\n",
"prep = ov.preprocess.PrePostProcessor(ov_model)\n",
"prep.input(\"input.1\").tensor().set_layout(ov.Layout(\"nchw\"))\n",
"prep.input(\"input.1\").preprocess().reverse_channels()\n",
"ov_model = prep.build()"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"# Legacy Model Optimizer API\n",
"from openvino.tools import mo\n",
"\n",
"ov_model = mo.convert_model(ONNX_CV_MODEL_PATH, reverse_input_channels=True)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Cutting Off Parts of a Model\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Cutting model inputs and outputs from a model is no longer available in the new conversion API. Instead, we recommend performing the cut in the original framework. Examples of model cutting of TensorFlow protobuf, TensorFlow SavedModel, and ONNX formats with tools provided by the Tensorflow and ONNX frameworks can be found in [documentation guide](https://docs.openvino.ai/2024/documentation/legacy-features/transition-legacy-conversion-api.html#cutting-off-parts-of-a-model). For PyTorch, TensorFlow 2 Keras, and PaddlePaddle, we recommend changing the original model code to perform the model cut."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
},
"openvino_notebooks": {
"imageUrl": "",
"tags": {
"categories": [
"Convert",
"API Overview"
],
"libraries": [],
"other": [],
"tasks": [
"Image Classification",
"Text Classification"
]
}
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|