Spaces:
Runtime error
Runtime error
File size: 163,314 Bytes
db5855f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "82a43bc9-5339-4fa2-a7b4-e3ad0bc7a54a",
"metadata": {},
"source": [
"# Image-to-Video synthesis with AnimateAnyone and OpenVINO\n",
"\n",
"\n",
"[AnimateAnyone](https://arxiv.org/pdf/2311.17117.pdf) tackles the task of generating animation sequences from a single character image. It builds upon diffusion models pre-trained on vast character image datasets.\n",
"\n",
"The core of AnimateAnyone is a diffusion model pre-trained on a massive dataset of character images. This model learns the underlying character representation and distribution, allowing for realistic and diverse character animation.\n",
"To capture the specific details and characteristics of the input character image, AnimateAnyone incorporates a ReferenceNet module. This module acts like an attention mechanism, focusing on the input image and guiding the animation process to stay consistent with the original character's appearance. AnimateAnyone enables control over the character's pose during animation. This might involve using techniques like parametric pose embedding or direct pose vector input, allowing for the creation of various character actions and movements. To ensure smooth transitions and temporal coherence throughout the animation sequence, AnimateAnyone incorporates temporal modeling techniques. This may involve recurrent architectures like LSTMs or transformers that capture the temporal dependencies between video frames.\n",
"\n",
"Overall, AnimateAnyone combines a powerful pre-trained diffusion model with a character-specific attention mechanism (ReferenceNet), pose guidance, and temporal modeling to achieve controllable, high-fidelity character animation from a single image.\n",
"\n",
"Learn more in [GitHub repo](https://github.com/MooreThreads/Moore-AnimateAnyone) and [paper](https://arxiv.org/pdf/2311.17117.pdf).\n",
"\n",
"<div class=\"alert alert-warning\">\n",
" <p style=\"font-size:1.25em\"><b>! WARNING !</b></p>\n",
" <p>\n",
" This tutorial requires at least <b>96 GB</b> of RAM for model conversion and <b>40 GB</b> for inference. Changing the values of <code>HEIGHT</code>, <code>WIDTH</code> and <code>VIDEO_LENGTH</code> variables will change the memory consumption but will also affect accuracy.\n",
" </p>\n",
"</div>\n",
"\n",
"#### Table of contents:\n",
"\n",
"- [Prerequisites](#Prerequisites)\n",
"- [Prepare base model](#Prepare-base-model)\n",
"- [Prepare image encoder](#Prepare-image-encoder)\n",
"- [Download weights](#Download-weights)\n",
"- [Initialize models](#Initialize-models)\n",
"- [Load pretrained weights](#Load-pretrained-weights)\n",
"- [Convert model to OpenVINO IR](#Convert-model-to-OpenVINO-IR)\n",
" - [VAE](#VAE)\n",
" - [Reference UNet](#Reference-UNet)\n",
" - [Denoising UNet](#Denoising-UNet)\n",
" - [Pose Guider](#Pose-Guider)\n",
" - [Image Encoder](#Image-Encoder)\n",
"- [Inference](#Inference)\n",
"- [Video post-processing](#Video-post-processing)\n",
"- [Interactive inference](#Interactive-inference)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "33e0d739-01c9-4a16-873c-2fccc046d3a9",
"metadata": {},
"source": [
"## Prerequisites\n",
"[back to top ⬆️](#Table-of-contents:)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "eb8ce0dc-7e5d-4661-a7e7-378bb9e67994",
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[33mWARNING: typer 0.12.3 does not provide the extra 'all'\u001b[0m\u001b[33m\n",
"\u001b[0mNote: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"from pathlib import Path\n",
"import requests\n",
"\n",
"\n",
"REPO_PATH = Path(\"Moore-AnimateAnyone\")\n",
"if not REPO_PATH.exists():\n",
" !git clone -q \"https://github.com/itrushkin/Moore-AnimateAnyone.git\"\n",
"%pip install -q \"torch>=2.1\" torchvision einops omegaconf \"diffusers<=0.24\" transformers av accelerate \"openvino>=2024.0\" \"nncf>=2.9.0\" \"gradio>=4.19\" --extra-index-url \"https://download.pytorch.org/whl/cpu\"\n",
"import sys\n",
"\n",
"sys.path.insert(0, str(REPO_PATH.resolve()))\n",
"r = requests.get(\n",
" url=\"https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/skip_kernel_extension.py\",\n",
")\n",
"open(\"skip_kernel_extension.py\", \"w\").write(r.text)\n",
"%load_ext skip_kernel_extension"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "9f595c7b-1fdb-4a1e-970d-ad5334e47d5c",
"metadata": {},
"source": [
"Note that we clone a fork of original repo with tweaked forward methods."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "a2e1b26e-9142-47fa-a15e-5930ef8f306e",
"metadata": {},
"outputs": [],
"source": [
"MODEL_DIR = Path(\"models\")\n",
"VAE_ENCODER_PATH = MODEL_DIR / \"vae_encoder.xml\"\n",
"VAE_DECODER_PATH = MODEL_DIR / \"vae_decoder.xml\"\n",
"REFERENCE_UNET_PATH = MODEL_DIR / \"reference_unet.xml\"\n",
"DENOISING_UNET_PATH = MODEL_DIR / \"denoising_unet.xml\"\n",
"POSE_GUIDER_PATH = MODEL_DIR / \"pose_guider.xml\"\n",
"IMAGE_ENCODER_PATH = MODEL_DIR / \"image_encoder.xml\"\n",
"\n",
"WIDTH = 448\n",
"HEIGHT = 512\n",
"VIDEO_LENGTH = 24\n",
"\n",
"SHOULD_CONVERT = not all(\n",
" p.exists()\n",
" for p in [\n",
" VAE_ENCODER_PATH,\n",
" VAE_DECODER_PATH,\n",
" REFERENCE_UNET_PATH,\n",
" DENOISING_UNET_PATH,\n",
" POSE_GUIDER_PATH,\n",
" IMAGE_ENCODER_PATH,\n",
" ]\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "917e01b7-43bc-4358-8752-cc862bd74758",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/itrushkin/.virtualenvs/test/lib/python3.10/site-packages/diffusers/utils/outputs.py:63: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n",
" torch.utils._pytree._register_pytree_node(\n",
"/home/itrushkin/.virtualenvs/test/lib/python3.10/site-packages/diffusers/utils/outputs.py:63: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n",
" torch.utils._pytree._register_pytree_node(\n",
"/home/itrushkin/.virtualenvs/test/lib/python3.10/site-packages/diffusers/utils/outputs.py:63: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n",
" torch.utils._pytree._register_pytree_node(\n"
]
}
],
"source": [
"from datetime import datetime\n",
"from typing import Optional, Union, List, Callable\n",
"import math\n",
"\n",
"from PIL import Image\n",
"import openvino as ov\n",
"from torchvision import transforms\n",
"from einops import repeat\n",
"from tqdm.auto import tqdm\n",
"from einops import rearrange\n",
"from omegaconf import OmegaConf\n",
"from diffusers import DDIMScheduler\n",
"from diffusers.image_processor import VaeImageProcessor\n",
"from transformers import CLIPImageProcessor\n",
"import torch\n",
"import gradio as gr\n",
"import ipywidgets as widgets\n",
"import numpy as np\n",
"\n",
"from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline\n",
"from src.utils.util import get_fps, read_frames\n",
"from src.utils.util import save_videos_grid\n",
"from src.pipelines.context import get_context_scheduler"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "4bcfe74c-1caf-404b-89c9-466c60e19aa7",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:nncf:NNCF initialized successfully. Supported frameworks detected: torch, openvino\n"
]
}
],
"source": [
"%%skip not $SHOULD_CONVERT\n",
"from pathlib import PurePosixPath\n",
"import gc\n",
"import warnings\n",
"\n",
"from typing import Dict, Any\n",
"from diffusers import AutoencoderKL\n",
"from huggingface_hub import hf_hub_download, snapshot_download\n",
"from transformers import CLIPVisionModelWithProjection\n",
"import nncf\n",
"\n",
"from src.models.unet_2d_condition import UNet2DConditionModel\n",
"from src.models.unet_3d import UNet3DConditionModel\n",
"from src.models.pose_guider import PoseGuider"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "dfc4d86e-fe72-48b1-9af7-6b428935fe3a",
"metadata": {},
"source": [
"## Prepare base model\n",
"[back to top ⬆️](#Table-of-contents:)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "ff7caead-ad5c-421f-8177-6afcbd4cde54",
"metadata": {},
"outputs": [],
"source": [
"%%skip not $SHOULD_CONVERT\n",
"local_dir = Path(\"./pretrained_weights/stable-diffusion-v1-5\")\n",
"local_dir.mkdir(parents=True, exist_ok=True)\n",
"for hub_file in [\"unet/config.json\", \"unet/diffusion_pytorch_model.bin\"]:\n",
" saved_path = local_dir / hub_file\n",
" if saved_path.exists():\n",
" continue\n",
" hf_hub_download(\n",
" repo_id=\"runwayml/stable-diffusion-v1-5\",\n",
" subfolder=PurePosixPath(saved_path.parent.name),\n",
" filename=PurePosixPath(saved_path.name),\n",
" local_dir=local_dir,\n",
" )"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "30022dee-d76a-4eba-8652-620ecde4a2f1",
"metadata": {},
"source": [
"## Prepare image encoder\n",
"[back to top ⬆️](#Table-of-contents:)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "a50a8216-4edd-4237-bee4-e07b33758644",
"metadata": {},
"outputs": [],
"source": [
"%%skip not $SHOULD_CONVERT\n",
"local_dir = Path(\"./pretrained_weights\")\n",
"local_dir.mkdir(parents=True, exist_ok=True)\n",
"for hub_file in [\"image_encoder/config.json\", \"image_encoder/pytorch_model.bin\"]:\n",
" saved_path = local_dir / hub_file\n",
" if saved_path.exists():\n",
" continue\n",
" hf_hub_download(\n",
" repo_id=\"lambdalabs/sd-image-variations-diffusers\",\n",
" subfolder=PurePosixPath(saved_path.parent.name),\n",
" filename=PurePosixPath(saved_path.name),\n",
" local_dir=local_dir,\n",
" )"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "daed8698-c76a-4b59-aa13-165749c6a0db",
"metadata": {},
"source": [
"## Download weights\n",
"[back to top ⬆️](#Table-of-contents:)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "c5013395-295a-4c7c-8302-2459c343de65",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4045ef358f1e4bbea93919ce15cff43a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Fetching 5 files: 0%| | 0/5 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "638c843a8390445b998d66af98605a36",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Fetching 6 files: 0%| | 0/6 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%%skip not $SHOULD_CONVERT\n",
"snapshot_download(\n",
" repo_id=\"stabilityai/sd-vae-ft-mse\", local_dir=\"./pretrained_weights/sd-vae-ft-mse\"\n",
")\n",
"snapshot_download(\n",
" repo_id=\"patrolli/AnimateAnyone\",\n",
" local_dir=\"./pretrained_weights\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "d7993cfc-bda1-4041-959c-44a7c9a60b33",
"metadata": {},
"outputs": [],
"source": [
"config = OmegaConf.load(\"Moore-AnimateAnyone/configs/prompts/animation.yaml\")\n",
"infer_config = OmegaConf.load(\"Moore-AnimateAnyone/\" + config.inference_config)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "3d0cfb91-cfb7-4348-b249-3b926741db4d",
"metadata": {},
"source": [
"## Initialize models\n",
"[back to top ⬆️](#Table-of-contents:)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "8e2ab6ea-7f9b-4e23-a99b-9bb2477c951d",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Some weights of the model checkpoint were not used when initializing UNet2DConditionModel: \n",
" ['conv_norm_out.weight, conv_norm_out.bias, conv_out.weight, conv_out.bias']\n"
]
}
],
"source": [
"%%skip not $SHOULD_CONVERT\n",
"vae = AutoencoderKL.from_pretrained(config.pretrained_vae_path)\n",
"reference_unet = UNet2DConditionModel.from_pretrained(config.pretrained_base_model_path, subfolder=\"unet\")\n",
"denoising_unet = UNet3DConditionModel.from_pretrained_2d(\n",
" config.pretrained_base_model_path,\n",
" config.motion_module_path,\n",
" subfolder=\"unet\",\n",
" unet_additional_kwargs=infer_config.unet_additional_kwargs,\n",
")\n",
"pose_guider = PoseGuider(320, block_out_channels=(16, 32, 96, 256))\n",
"image_enc = CLIPVisionModelWithProjection.from_pretrained(config.image_encoder_path)\n",
"\n",
"\n",
"NUM_CHANNELS_LATENTS = denoising_unet.config.in_channels"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "27889f9f-5477-4058-bdc6-6ff273182ef4",
"metadata": {},
"source": [
"## Load pretrained weights\n",
"[back to top ⬆️](#Table-of-contents:)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "099bf2d2-e8ab-4c67-b044-b87d65aba1aa",
"metadata": {},
"outputs": [],
"source": [
"%%skip not $SHOULD_CONVERT\n",
"denoising_unet.load_state_dict(\n",
" torch.load(config.denoising_unet_path, map_location=\"cpu\"),\n",
" strict=False,\n",
")\n",
"reference_unet.load_state_dict(\n",
" torch.load(config.reference_unet_path, map_location=\"cpu\"),\n",
")\n",
"pose_guider.load_state_dict(\n",
" torch.load(config.pose_guider_path, map_location=\"cpu\"),\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "f4a42ed6-496f-48ea-8e24-482f68ff3500",
"metadata": {},
"source": [
"## Convert model to OpenVINO IR\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"The pose sequence is initially encoded using Pose Guider and fused with multi-frame noise, followed by the Denoising UNet conducting the denoising process for video generation. The computational block of the Denoising UNet consists of Spatial-Attention, Cross-Attention, and Temporal-Attention, as illustrated in the dashed box on the right. The integration of reference image involves two aspects. Firstly, detailed features are extracted through ReferenceNet and utilized for Spatial-Attention. Secondly, semantic features are extracted through the CLIP image encoder for Cross-Attention. Temporal-Attention operates in the temporal dimension. Finally, the VAE decoder decodes the result into a video clip.\n",
"\n",
"\n",
"\n",
"The pipeline contains 6 PyTorch modules:\n",
" - VAE encoder\n",
" - VAE decoder\n",
" - Image encoder\n",
" - Reference UNet\n",
" - Denoising UNet\n",
" - Pose Guider\n",
"\n",
"For reducing memory consumption, weights compression optimization can be applied using [NNCF](https://github.com/openvinotoolkit/nncf). Weight compression aims to reduce the memory footprint of a model.\n",
"models, which require extensive memory to store the weights during inference, can benefit from weight compression in the following ways:\n",
"\n",
"* enabling the inference of exceptionally large models that cannot be accommodated in the memory of the device;\n",
"\n",
"* improving the inference performance of the models by reducing the latency of the memory access when computing the operations with weights, for example, Linear layers.\n",
"\n",
"[Neural Network Compression Framework (NNCF)](https://github.com/openvinotoolkit/nncf) provides 4-bit / 8-bit mixed weight quantization as a compression method. The main difference between weights compression and full model quantization (post-training quantization) is that activations remain floating-point in the case of weights compression which leads to a better accuracy. In addition, weight compression is data-free and does not require a calibration dataset, making it easy to use.\n",
"\n",
"`nncf.compress_weights` function can be used for performing weights compression. The function accepts an OpenVINO model and other compression parameters.\n",
"\n",
"More details about weights compression can be found in [OpenVINO documentation](https://docs.openvino.ai/2023.3/weight_compression.html)."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "d322cdc0-8b72-429a-a989-e0adf097a0c8",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": []
},
"outputs": [],
"source": [
"%%skip not $SHOULD_CONVERT\n",
"def cleanup_torchscript_cache():\n",
" \"\"\"\n",
" Helper for removing cached model representation\n",
" \"\"\"\n",
" torch._C._jit_clear_class_registry()\n",
" torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()\n",
" torch.jit._state._clear_class_state()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "507058de-9328-4de5-bf19-c68933cb9566",
"metadata": {},
"outputs": [],
"source": [
"%%skip not $SHOULD_CONVERT\n",
"warnings.simplefilter(\"ignore\", torch.jit.TracerWarning)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "e0adf3a0-f60d-441c-a217-f2b9a79dcd07",
"metadata": {},
"source": [
"### VAE\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"The VAE model has two parts, an encoder and a decoder. The encoder is used to convert the image into a low dimensional latent representation, which will serve as the input to the U-Net model. The decoder, conversely, transforms the latent representation back into an image.\n",
"\n",
"During latent diffusion training, the encoder is used to get the latent representations (latents) of the images for the forward diffusion process, which applies more and more noise at each step. During inference, the denoised latents generated by the reverse diffusion process are converted back into images using the VAE decoder.\n",
"\n",
"As the encoder and the decoder are used independently in different parts of the pipeline, it will be better to convert them to separate models."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "58e53954-b9fd-4fbf-ba7f-8a5e269cf2dc",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"WARNING:nncf:NNCF provides best results with torch==2.1.2, while current torch version is 2.2.2+cpu. If you encounter issues, consider switching to torch==2.1.2\n",
"INFO:nncf:Statistics of the bitwidth distribution:\n",
"+--------------+---------------------------+-----------------------------------+\n",
"| Num bits (N) | % all parameters (layers) | % ratio-defining parameters |\n",
"| | | (layers) |\n",
"+==============+===========================+===================================+\n",
"| 8 | 100% (32 / 32) | 100% (32 / 32) |\n",
"+--------------+---------------------------+-----------------------------------+\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d48ea62d00774731a7b9e796770553bb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
"</pre>\n"
],
"text/plain": [
"\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%%skip not $SHOULD_CONVERT\n",
"if not VAE_ENCODER_PATH.exists():\n",
" class VaeEncoder(torch.nn.Module):\n",
" def __init__(self, vae):\n",
" super().__init__()\n",
" self.vae = vae\n",
" \n",
" def forward(self, x):\n",
" return self.vae.encode(x).latent_dist.mean\n",
" vae.eval()\n",
" with torch.no_grad():\n",
" vae_encoder = ov.convert_model(VaeEncoder(vae), example_input=torch.zeros(1,3,512,448))\n",
" vae_encoder = nncf.compress_weights(vae_encoder)\n",
" ov.save_model(vae_encoder, VAE_ENCODER_PATH)\n",
" del vae_encoder\n",
" cleanup_torchscript_cache()"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "c8f87c8d-2538-478a-8f8f-7fa1f498dcb2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:nncf:Statistics of the bitwidth distribution:\n",
"+--------------+---------------------------+-----------------------------------+\n",
"| Num bits (N) | % all parameters (layers) | % ratio-defining parameters |\n",
"| | | (layers) |\n",
"+==============+===========================+===================================+\n",
"| 8 | 100% (40 / 40) | 100% (40 / 40) |\n",
"+--------------+---------------------------+-----------------------------------+\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ce3d8670ebdc41ecaeae193539a53b8a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
"</pre>\n"
],
"text/plain": [
"\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%%skip not $SHOULD_CONVERT\n",
"if not VAE_DECODER_PATH.exists():\n",
" class VaeDecoder(torch.nn.Module):\n",
" def __init__(self, vae):\n",
" super().__init__()\n",
" self.vae = vae\n",
" \n",
" def forward(self, z):\n",
" return self.vae.decode(z).sample\n",
" vae.eval()\n",
" with torch.no_grad():\n",
" vae_decoder = ov.convert_model(VaeDecoder(vae), example_input=torch.zeros(1,4,HEIGHT//8,WIDTH//8))\n",
" vae_decoder = nncf.compress_weights(vae_decoder)\n",
" ov.save_model(vae_decoder, VAE_DECODER_PATH)\n",
" del vae_decoder\n",
" cleanup_torchscript_cache()\n",
"del vae\n",
"gc.collect()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "be82f4e8-0e1b-406a-93a2-d8c8c23c7797",
"metadata": {},
"source": [
"### Reference UNet\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Pipeline extracts reference attention features from all transformer blocks inside Reference UNet model. We call the original forward pass to obtain shapes of the outputs as they will be used in the next pipeline step."
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "9a31c54b-b6e9-41b1-80f6-c06a1bae52ae",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:nncf:Statistics of the bitwidth distribution:\n",
"+--------------+---------------------------+-----------------------------------+\n",
"| Num bits (N) | % all parameters (layers) | % ratio-defining parameters |\n",
"| | | (layers) |\n",
"+==============+===========================+===================================+\n",
"| 8 | 100% (270 / 270) | 100% (270 / 270) |\n",
"+--------------+---------------------------+-----------------------------------+\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b31aab4251de44e8bb59a533bb1cb9e4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
"</pre>\n"
],
"text/plain": [
"\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%%skip not $SHOULD_CONVERT\n",
"if not REFERENCE_UNET_PATH.exists():\n",
" class ReferenceUNetWrapper(torch.nn.Module):\n",
" def __init__(self, reference_unet):\n",
" super().__init__()\n",
" self.reference_unet = reference_unet\n",
" \n",
" def forward(self, sample, timestep, encoder_hidden_states):\n",
" return self.reference_unet(sample, timestep, encoder_hidden_states, return_dict=False)[1]\n",
" \n",
" sample = torch.zeros(2, 4, HEIGHT // 8, WIDTH // 8)\n",
" timestep = torch.tensor(0)\n",
" encoder_hidden_states = torch.zeros(2, 1, 768)\n",
" reference_unet.eval()\n",
" with torch.no_grad():\n",
" wrapper = ReferenceUNetWrapper(reference_unet)\n",
" example_input = (sample, timestep, encoder_hidden_states)\n",
" ref_features_shapes = {k: v.shape for k, v in wrapper(*example_input).items()}\n",
" ov_reference_unet = ov.convert_model(\n",
" wrapper,\n",
" example_input=example_input,\n",
" )\n",
" ov_reference_unet = nncf.compress_weights(ov_reference_unet)\n",
" ov.save_model(ov_reference_unet, REFERENCE_UNET_PATH)\n",
" del ov_reference_unet\n",
" del wrapper\n",
" cleanup_torchscript_cache()\n",
"del reference_unet\n",
"gc.collect()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "7ddd784b-c54b-45f4-9797-7b4634e90ec0",
"metadata": {},
"source": [
"### Denoising UNet\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Denoising UNet is the main part of all diffusion pipelines. This model consumes the majority of memory, so we need to reduce its size as much as possible.\n",
"\n",
"Here we make all shapes static meaning that the size of the video will be constant.\n",
"\n",
"Also, we use the `ref_features` input with the same tensor shapes as output of [Reference UNet](#Reference-UNet) model on the previous step."
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "e95a7dbd-6235-44f0-81d7-1898b51839c9",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:nncf:Statistics of the bitwidth distribution:\n",
"+--------------+---------------------------+-----------------------------------+\n",
"| Num bits (N) | % all parameters (layers) | % ratio-defining parameters |\n",
"| | | (layers) |\n",
"+==============+===========================+===================================+\n",
"| 8 | 100% (534 / 534) | 100% (534 / 534) |\n",
"+--------------+---------------------------+-----------------------------------+\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "776d8e8cb44446428e50db32618df935",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
"</pre>\n"
],
"text/plain": [
"\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%%skip not $SHOULD_CONVERT\n",
"if not DENOISING_UNET_PATH.exists():\n",
" class DenoisingUNetWrapper(torch.nn.Module):\n",
" def __init__(self, denoising_unet):\n",
" super().__init__()\n",
" self.denoising_unet = denoising_unet\n",
" \n",
" def forward(\n",
" self,\n",
" sample,\n",
" timestep,\n",
" encoder_hidden_states,\n",
" pose_cond_fea,\n",
" ref_features\n",
" ):\n",
" return self.denoising_unet(\n",
" sample,\n",
" timestep,\n",
" encoder_hidden_states,\n",
" ref_features,\n",
" pose_cond_fea=pose_cond_fea,\n",
" return_dict=False)\n",
"\n",
" example_input = {\n",
" \"sample\": torch.zeros(2, 4, VIDEO_LENGTH, HEIGHT // 8, WIDTH // 8),\n",
" \"timestep\": torch.tensor(999),\n",
" \"encoder_hidden_states\": torch.zeros(2,1,768),\n",
" \"pose_cond_fea\": torch.zeros(2, 320, VIDEO_LENGTH, HEIGHT // 8, WIDTH // 8),\n",
" \"ref_features\": {k: torch.zeros(shape) for k, shape in ref_features_shapes.items()}\n",
" }\n",
" \n",
" denoising_unet.eval()\n",
" with torch.no_grad():\n",
" ov_denoising_unet = ov.convert_model(\n",
" DenoisingUNetWrapper(denoising_unet),\n",
" example_input=tuple(example_input.values())\n",
" )\n",
" ov_denoising_unet.inputs[0].get_node().set_partial_shape(ov.PartialShape((2, 4, VIDEO_LENGTH, HEIGHT // 8, WIDTH // 8)))\n",
" ov_denoising_unet.inputs[2].get_node().set_partial_shape(ov.PartialShape((2, 1, 768)))\n",
" ov_denoising_unet.inputs[3].get_node().set_partial_shape(ov.PartialShape((2, 320, VIDEO_LENGTH, HEIGHT // 8, WIDTH // 8)))\n",
" for ov_input, shape in zip(ov_denoising_unet.inputs[4:], ref_features_shapes.values()):\n",
" ov_input.get_node().set_partial_shape(ov.PartialShape(shape))\n",
" ov_input.get_node().set_element_type(ov.Type.f32)\n",
" ov_denoising_unet.validate_nodes_and_infer_types()\n",
" ov_denoising_unet = nncf.compress_weights(ov_denoising_unet)\n",
" ov.save_model(ov_denoising_unet, DENOISING_UNET_PATH)\n",
" del ov_denoising_unet\n",
" cleanup_torchscript_cache()\n",
"del denoising_unet\n",
"gc.collect()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "06054cfc-690c-4aaf-a05c-7df9d7ad08d2",
"metadata": {},
"source": [
"### Pose Guider\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"To ensure pose controllability, a lightweight pose guider is devised to efficiently integrate pose control signals into the denoising process."
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "d4cf6c05-5326-49d0-9e4e-fa9b2081445f",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:nncf:Statistics of the bitwidth distribution:\n",
"+--------------+---------------------------+-----------------------------------+\n",
"| Num bits (N) | % all parameters (layers) | % ratio-defining parameters |\n",
"| | | (layers) |\n",
"+==============+===========================+===================================+\n",
"| 8 | 100% (8 / 8) | 100% (8 / 8) |\n",
"+--------------+---------------------------+-----------------------------------+\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "36ac12f0ac654a90b866dd07b483eeef",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
"</pre>\n"
],
"text/plain": [
"\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%%skip not $SHOULD_CONVERT\n",
"if not POSE_GUIDER_PATH.exists():\n",
" pose_guider.eval()\n",
" with torch.no_grad():\n",
" ov_pose_guider = ov.convert_model(pose_guider, example_input=torch.zeros(1, 3, VIDEO_LENGTH, HEIGHT, WIDTH))\n",
" ov_pose_guider = nncf.compress_weights(ov_pose_guider)\n",
" ov.save_model(ov_pose_guider, POSE_GUIDER_PATH)\n",
" del ov_pose_guider\n",
" cleanup_torchscript_cache()\n",
"del pose_guider\n",
"gc.collect()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "c4db1630-95d4-4cea-927f-fe1d1c259597",
"metadata": {},
"source": [
"### Image Encoder\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Pipeline uses CLIP image encoder to generate encoder hidden states required for both reference and denoising UNets."
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "b7331636-b124-4038-9553-2292de72f13e",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/itrushkin/.virtualenvs/test/lib/python3.10/site-packages/transformers/modeling_utils.py:4225: FutureWarning: `_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead\n",
" warnings.warn(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:nncf:Statistics of the bitwidth distribution:\n",
"+--------------+---------------------------+-----------------------------------+\n",
"| Num bits (N) | % all parameters (layers) | % ratio-defining parameters |\n",
"| | | (layers) |\n",
"+==============+===========================+===================================+\n",
"| 8 | 100% (146 / 146) | 100% (146 / 146) |\n",
"+--------------+---------------------------+-----------------------------------+\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4bfabe55e887446fa5ef8c8fea37b33e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
"</pre>\n"
],
"text/plain": [
"\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%%skip not $SHOULD_CONVERT\n",
"if not IMAGE_ENCODER_PATH.exists():\n",
" image_enc.eval()\n",
" with torch.no_grad():\n",
" ov_image_encoder = ov.convert_model(image_enc, example_input=torch.zeros(1, 3, 224, 224), input=(1, 3, 224, 224))\n",
" ov_image_encoder = nncf.compress_weights(ov_image_encoder)\n",
" ov.save_model(ov_image_encoder, IMAGE_ENCODER_PATH)\n",
" del ov_image_encoder\n",
" cleanup_torchscript_cache()\n",
"del image_enc\n",
"gc.collect()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "4e059780-29fc-4fe0-9376-c83573695fbe",
"metadata": {},
"source": [
"## Inference\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"We inherit from the original pipeline modifying the calls to our models to match OpenVINO format."
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "35176d47-9a79-49dd-a61f-75892dba8d3d",
"metadata": {},
"outputs": [],
"source": [
"core = ov.Core()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "7a28383f-8249-4c24-bc4c-8dcb0f75461c",
"metadata": {},
"source": [
"### Select inference device\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"For starting work, please select inference device from dropdown list."
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "6f43558f-f244-43b7-9c82-c47b5b0bce23",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3e91c2a792224a4983cb2758f093b775",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Dropdown(description='Device:', index=5, options=('CPU', 'GPU.0', 'GPU.1', 'GPU.2', 'GPU.3', 'AUTO'), value='A…"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"device = widgets.Dropdown(\n",
" options=core.available_devices + [\"AUTO\"],\n",
" value=\"AUTO\",\n",
" description=\"Device:\",\n",
" disabled=False,\n",
")\n",
"\n",
"device"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "2c3cf752-cd75-4063-b56a-cade1894f926",
"metadata": {},
"outputs": [],
"source": [
"class OVPose2VideoPipeline(Pose2VideoPipeline):\n",
" def __init__(\n",
" self,\n",
" vae_encoder_path=VAE_ENCODER_PATH,\n",
" vae_decoder_path=VAE_DECODER_PATH,\n",
" image_encoder_path=IMAGE_ENCODER_PATH,\n",
" reference_unet_path=REFERENCE_UNET_PATH,\n",
" denoising_unet_path=DENOISING_UNET_PATH,\n",
" pose_guider_path=POSE_GUIDER_PATH,\n",
" device=device.value,\n",
" ):\n",
" self.vae_encoder = core.compile_model(vae_encoder_path, device)\n",
" self.vae_decoder = core.compile_model(vae_decoder_path, device)\n",
" self.image_encoder = core.compile_model(image_encoder_path, device)\n",
" self.reference_unet = core.compile_model(reference_unet_path, device)\n",
" self.denoising_unet = core.compile_model(denoising_unet_path, device)\n",
" self.pose_guider = core.compile_model(pose_guider_path, device)\n",
" self.scheduler = DDIMScheduler(**OmegaConf.to_container(infer_config.noise_scheduler_kwargs))\n",
"\n",
" self.vae_scale_factor = 8\n",
" self.clip_image_processor = CLIPImageProcessor()\n",
" self.ref_image_processor = VaeImageProcessor(do_convert_rgb=True)\n",
" self.cond_image_processor = VaeImageProcessor(do_convert_rgb=True, do_normalize=False)\n",
"\n",
" def decode_latents(self, latents):\n",
" video_length = latents.shape[2]\n",
" latents = 1 / 0.18215 * latents\n",
" latents = rearrange(latents, \"b c f h w -> (b f) c h w\")\n",
" # video = self.vae.decode(latents).sample\n",
" video = []\n",
" for frame_idx in tqdm(range(latents.shape[0])):\n",
" video.append(torch.from_numpy(self.vae_decoder(latents[frame_idx : frame_idx + 1])[0]))\n",
" video = torch.cat(video)\n",
" video = rearrange(video, \"(b f) c h w -> b c f h w\", f=video_length)\n",
" video = (video / 2 + 0.5).clamp(0, 1)\n",
" # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16\n",
" video = video.cpu().float().numpy()\n",
" return video\n",
"\n",
" def __call__(\n",
" self,\n",
" ref_image,\n",
" pose_images,\n",
" width,\n",
" height,\n",
" video_length,\n",
" num_inference_steps=30,\n",
" guidance_scale=3.5,\n",
" num_images_per_prompt=1,\n",
" eta: float = 0.0,\n",
" generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,\n",
" output_type: Optional[str] = \"tensor\",\n",
" callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,\n",
" callback_steps: Optional[int] = 1,\n",
" context_schedule=\"uniform\",\n",
" context_frames=24,\n",
" context_stride=1,\n",
" context_overlap=4,\n",
" context_batch_size=1,\n",
" interpolation_factor=1,\n",
" **kwargs,\n",
" ):\n",
" do_classifier_free_guidance = guidance_scale > 1.0\n",
"\n",
" # Prepare timesteps\n",
" self.scheduler.set_timesteps(num_inference_steps)\n",
" timesteps = self.scheduler.timesteps\n",
"\n",
" batch_size = 1\n",
"\n",
" # Prepare clip image embeds\n",
" clip_image = self.clip_image_processor.preprocess(ref_image.resize((224, 224)), return_tensors=\"pt\").pixel_values\n",
" clip_image_embeds = self.image_encoder(clip_image)[\"image_embeds\"]\n",
" clip_image_embeds = torch.from_numpy(clip_image_embeds)\n",
" encoder_hidden_states = clip_image_embeds.unsqueeze(1)\n",
" uncond_encoder_hidden_states = torch.zeros_like(encoder_hidden_states)\n",
"\n",
" if do_classifier_free_guidance:\n",
" encoder_hidden_states = torch.cat([uncond_encoder_hidden_states, encoder_hidden_states], dim=0)\n",
"\n",
" latents = self.prepare_latents(\n",
" batch_size * num_images_per_prompt,\n",
" 4,\n",
" width,\n",
" height,\n",
" video_length,\n",
" clip_image_embeds.dtype,\n",
" torch.device(\"cpu\"),\n",
" generator,\n",
" )\n",
"\n",
" # Prepare extra step kwargs.\n",
" extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)\n",
"\n",
" # Prepare ref image latents\n",
" ref_image_tensor = self.ref_image_processor.preprocess(ref_image, height=height, width=width) # (bs, c, width, height)\n",
" ref_image_latents = self.vae_encoder(ref_image_tensor)[0]\n",
" ref_image_latents = ref_image_latents * 0.18215 # (b, 4, h, w)\n",
" ref_image_latents = torch.from_numpy(ref_image_latents)\n",
"\n",
" # Prepare a list of pose condition images\n",
" pose_cond_tensor_list = []\n",
" for pose_image in pose_images:\n",
" pose_cond_tensor = self.cond_image_processor.preprocess(pose_image, height=height, width=width)\n",
" pose_cond_tensor = pose_cond_tensor.unsqueeze(2) # (bs, c, 1, h, w)\n",
" pose_cond_tensor_list.append(pose_cond_tensor)\n",
" pose_cond_tensor = torch.cat(pose_cond_tensor_list, dim=2) # (bs, c, t, h, w)\n",
" pose_fea = self.pose_guider(pose_cond_tensor)[0]\n",
" pose_fea = torch.from_numpy(pose_fea)\n",
"\n",
" context_scheduler = get_context_scheduler(context_schedule)\n",
"\n",
" # denoising loop\n",
" num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order\n",
" with self.progress_bar(total=num_inference_steps) as progress_bar:\n",
" for i, t in enumerate(timesteps):\n",
" noise_pred = torch.zeros(\n",
" (\n",
" latents.shape[0] * (2 if do_classifier_free_guidance else 1),\n",
" *latents.shape[1:],\n",
" ),\n",
" device=latents.device,\n",
" dtype=latents.dtype,\n",
" )\n",
" counter = torch.zeros(\n",
" (1, 1, latents.shape[2], 1, 1),\n",
" device=latents.device,\n",
" dtype=latents.dtype,\n",
" )\n",
"\n",
" # 1. Forward reference image\n",
" if i == 0:\n",
" ref_features = self.reference_unet(\n",
" (\n",
" ref_image_latents.repeat((2 if do_classifier_free_guidance else 1), 1, 1, 1),\n",
" torch.zeros_like(t),\n",
" # t,\n",
" encoder_hidden_states,\n",
" )\n",
" ).values()\n",
"\n",
" context_queue = list(\n",
" context_scheduler(\n",
" 0,\n",
" num_inference_steps,\n",
" latents.shape[2],\n",
" context_frames,\n",
" context_stride,\n",
" 0,\n",
" )\n",
" )\n",
" num_context_batches = math.ceil(len(context_queue) / context_batch_size)\n",
"\n",
" context_queue = list(\n",
" context_scheduler(\n",
" 0,\n",
" num_inference_steps,\n",
" latents.shape[2],\n",
" context_frames,\n",
" context_stride,\n",
" context_overlap,\n",
" )\n",
" )\n",
"\n",
" num_context_batches = math.ceil(len(context_queue) / context_batch_size)\n",
" global_context = []\n",
" for i in range(num_context_batches):\n",
" global_context.append(context_queue[i * context_batch_size : (i + 1) * context_batch_size])\n",
"\n",
" for context in global_context:\n",
" # 3.1 expand the latents if we are doing classifier free guidance\n",
" latent_model_input = torch.cat([latents[:, :, c] for c in context]).repeat(2 if do_classifier_free_guidance else 1, 1, 1, 1, 1)\n",
" latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)\n",
" b, c, f, h, w = latent_model_input.shape\n",
" latent_pose_input = torch.cat([pose_fea[:, :, c] for c in context]).repeat(2 if do_classifier_free_guidance else 1, 1, 1, 1, 1)\n",
"\n",
" pred = self.denoising_unet(\n",
" (\n",
" latent_model_input,\n",
" t,\n",
" encoder_hidden_states[:b],\n",
" latent_pose_input,\n",
" *ref_features,\n",
" )\n",
" )[0]\n",
"\n",
" for j, c in enumerate(context):\n",
" noise_pred[:, :, c] = noise_pred[:, :, c] + pred\n",
" counter[:, :, c] = counter[:, :, c] + 1\n",
"\n",
" # perform guidance\n",
" if do_classifier_free_guidance:\n",
" noise_pred_uncond, noise_pred_text = (noise_pred / counter).chunk(2)\n",
" noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)\n",
"\n",
" latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample\n",
"\n",
" if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):\n",
" progress_bar.update()\n",
" if callback is not None and i % callback_steps == 0:\n",
" step_idx = i // getattr(self.scheduler, \"order\", 1)\n",
" callback(step_idx, t, latents)\n",
"\n",
" if interpolation_factor > 0:\n",
" latents = self.interpolate_latents(latents, interpolation_factor, latents.device)\n",
" # Post-processing\n",
" images = self.decode_latents(latents) # (b, c, f, h, w)\n",
"\n",
" # Convert to tensor\n",
" if output_type == \"tensor\":\n",
" images = torch.from_numpy(images)\n",
"\n",
" return images"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "ca762050-692d-48ed-b31b-73130e712784",
"metadata": {},
"outputs": [],
"source": [
"pipe = OVPose2VideoPipeline()"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "9a34c91c-20f5-4e5f-aed2-f3dc3c226e79",
"metadata": {},
"outputs": [],
"source": [
"pose_images = read_frames(\"Moore-AnimateAnyone/configs/inference/pose_videos/anyone-video-2_kps.mp4\")\n",
"src_fps = get_fps(\"Moore-AnimateAnyone/configs/inference/pose_videos/anyone-video-2_kps.mp4\")\n",
"ref_image = Image.open(\"Moore-AnimateAnyone/configs/inference/ref_images/anyone-5.png\").convert(\"RGB\")\n",
"pose_list = []\n",
"for pose_image_pil in pose_images[:VIDEO_LENGTH]:\n",
" pose_list.append(pose_image_pil)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "a6636887-eb52-494f-86ee-d3da25746c14",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": []
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "de88200bdd334dafa57361beb0bcd027",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/30 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c5f6b29521e24285822c4d072fb3f554",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/24 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"video = pipe(\n",
" ref_image,\n",
" pose_list,\n",
" width=WIDTH,\n",
" height=HEIGHT,\n",
" video_length=VIDEO_LENGTH,\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "b35f75ae-818e-483b-8e83-7e580d728eaf",
"metadata": {},
"source": [
"## Video post-processing\n",
"[back to top ⬆️](#Table-of-contents:)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "86cff8b7-4723-4520-ad2e-bbca6f0c76d7",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": []
},
"outputs": [],
"source": [
"new_h, new_w = video.shape[-2:]\n",
"pose_transform = transforms.Compose([transforms.Resize((new_h, new_w)), transforms.ToTensor()])\n",
"pose_tensor_list = []\n",
"for pose_image_pil in pose_images[:VIDEO_LENGTH]:\n",
" pose_tensor_list.append(pose_transform(pose_image_pil))\n",
"\n",
"ref_image_tensor = pose_transform(ref_image) # (c, h, w)\n",
"ref_image_tensor = ref_image_tensor.unsqueeze(1).unsqueeze(0) # (1, c, 1, h, w)\n",
"ref_image_tensor = repeat(ref_image_tensor, \"b c f h w -> b c (repeat f) h w\", repeat=VIDEO_LENGTH)\n",
"pose_tensor = torch.stack(pose_tensor_list, dim=0) # (f, c, h, w)\n",
"pose_tensor = pose_tensor.transpose(0, 1)\n",
"pose_tensor = pose_tensor.unsqueeze(0)\n",
"video = torch.cat([ref_image_tensor, pose_tensor, video], dim=0)\n",
"\n",
"save_dir = Path(\"./output\")\n",
"save_dir.mkdir(parents=True, exist_ok=True)\n",
"date_str = datetime.now().strftime(\"%Y%m%d\")\n",
"time_str = datetime.now().strftime(\"%H%M\")\n",
"out_path = save_dir / f\"{date_str}T{time_str}.mp4\"\n",
"save_videos_grid(\n",
" video,\n",
" str(out_path),\n",
" n_rows=3,\n",
" fps=src_fps,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "08c82ebc-55b7-4899-a34d-dca208567125",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<video controls >\n",
" <source src=\"data:video/mp4;base64,AAAAIGZ0eXBpc29tAAACAGlzb21pc28yYXZjMW1wNDEAAAAIZnJlZQABHeBtZGF0AAACuQYF//+13EXpvebZSLeWLNgg2SPu73gyNjQgLSBjb3JlIDE2NCAtIEguMjY0L01QRUctNCBBVkMgY29kZWMgLSBDb3B5bGVmdCAyMDAzLTIwMjMgLSBodHRwOi8vd3d3LnZpZGVvbGFuLm9yZy94MjY0Lmh0bWwgLSBvcHRpb25zOiBjYWJhYz0xIHJlZj0zIGRlYmxvY2s9MTowOjAgYW5hbHlzZT0weDM6MHgxMTMgbWU9aGV4IHN1Ym1lPTcgcHN5PTEgcHN5X3JkPTEuMDA6MC4wMCBtaXhlZF9yZWY9MSBtZV9yYW5nZT0xNiBjaHJvbWFfbWU9MSB0cmVsbGlzPTEgOHg4ZGN0PTEgY3FtPTAgZGVhZHpvbmU9MjEsMTEgZmFzdF9wc2tpcD0xIGNocm9tYV9xcF9vZmZzZXQ9LTIgdGhyZWFkcz04IGxvb2thaGVhZF90aHJlYWRzPTggc2xpY2VkX3RocmVhZHM9MSBzbGljZXM9OCBucj0wIGRlY2ltYXRlPTEgaW50ZXJsYWNlZD0wIGJsdXJheV9jb21wYXQ9MCBjb25zdHJhaW5lZF9pbnRyYT0wIGJmcmFtZXM9MyBiX3B5cmFtaWQ9MiBiX2FkYXB0PTEgYl9iaWFzPTAgZGlyZWN0PTEgd2VpZ2h0Yj0xIG9wZW5fZ29wPTAgd2VpZ2h0cD0yIGtleWludD0yNTAga2V5aW50X21pbj0yNSBzY2VuZWN1dD00MCBpbnRyYV9yZWZyZXNoPTAgcmNfbG9va2FoZWFkPTQwIHJjPWFiciBtYnRyZWU9MSBiaXRyYXRlPTEwMjQgcmF0ZXRvbD0xLjAgcWNvbXA9MC42MCBxcG1pbj0wIHFwbWF4PTY5IHFwc3RlcD00IGlwX3JhdGlvPTEuNDAgYXE9MToxLjAwAIAAAAb9ZYiEACD/2lu4PtiAGCZiIJmO35BneLS4/AKawbwF3gS81VgCN/Hryek5EZJp1IoIopMo/OyDntxcd3MAAAMAAAMAVxSBmCOAnDsVm8fhn7n0VVp21seljiRkJ1VoCQyIRmzl696tv/0E0dR5FQ/wwOIzrhedZbedKmoLs/V1ojl6WMQy+8EBnX6Zs6o9K5GGPOOoVDBYUPJoj4c14/lPudcS5hcRqCozTMIpM9T+kLGIT1IvQFnPYQYxWDo+FPltgvD3WInKYOjKw8e17IX4+qLrtVMM5tyBHHka9yRgMahqv+S3wquE4YVxbpfeCb4L8jcTF9UwOIY0GjgXHzbpmqZ7UpNV5TZ/SzL94hbLthcrb/gWo00187v4r09X3NINUBarU1VylBUfgAAAL+f6xFHihnrkiH2MNHMPR+/E7hG4khu8BPsx0MK0MKkdQytg5ckeAEMcEr4N76ehiD3Yi/GcJJu1Nh8qVtk7aHEB2MF12u8sQCnIcJLVoITfdWKjNzJVpT5XT3j4d04rsTcO3kFNazoMR/1Q/PxF3paBWY6UTNl0xMO2u2U1nlj1aOHEM2NGWuZTo0fxMP46yZOsM4neYsqwCfieUqwcgueXrRE8cibKn3Z+c1Hktyg3fkRl+G08au3hr/uKziuEWX/s+rLGkM83cUqL9kNxqIP3Mpdtp8Pe5gsD479sqaONu+cr26upw12uY9JR0peKVX2/xRvw1TgliPZ78PcTJMhzPS53qPgqMi3VaTwvCJZaYUy9PCpQP1mam7fk/NlYJvypG8l6zxntJFw8whhr+kRNF1lSfGqpU17pkr4DnLm6zEUigOHYHgjulTLw09aBYgNfcjvmIGiH7fObmq6yLpQlIPLYyK4Dl4IX7LUwlxfgG7dE/3V/3tK6wScTGdDi1ehyE1V19Tkz5J74vRvxjm0cF8Bv6ES7Sgd06Yb6uU1/pIA58qyvpVYV3CDWKGFv9Tpb3jv9Px9zYef7dFRlsjqOrzULf5289g2PA8476jdHZ0kEPu92jizMRnY5M2iFg8gYU9TGJkWQhCRpR406tER3Xo2DEV2L7F0e9/ppufneEPRRt7NeSL65Rody22SOeNfR71SoVh9tdZCij2b5z7ACK8x2yP7FYbgXXNJATZYRY5WxPTtR6HEmi5qOc6TfkhmHZZO18PTOIfG4LwkP70ej8t6Pqg+n3T3TMeF8kjlf2xfusVAEaoxq76ISqlkLKI9JE6WF0NU4fCiK0/wOpQNTygzkAT1AvcZ4fanA9GJIv6UAnL673fkbvSJwbyR5WXA2xKG3F3ds2poKV316f3jQmt55sNkfvhmFs+qASaYXmLwO7qnjjw3YfZCiZOn19lJo+yXuWfetYiTC298+PqVxnHrdN31g4AAWRTMPAzuSnZaX60KdMY+14BYkk/4k6qdF1lThOn3HU6tgZstj45reSVV2zNPYppfqdMRa0W2BksMkCEqXZROMdUdDx1XZRjQDnxjGaXeXUTVbVJYJuUqrwCqiGkNDzresCrnRsvW7HFhykTUQoqL9uNONaHnwgo5Z6a6g3to93u4wz0Lm5Jkmk1/tbsYk9ciowHx4m+dal5aoG0aFzLei/l0rubvEkuONf9QEKffZaxDkQBcQRJg5MgtoSgHvzKbSgO4YXGObp3TsXZaWxOay7b51ilHaH5KlH/w4LCQcvvtzcaGCd+ZCb0//EgqeN2SbdWRigeoIe2t7wTWfP4zog9L7UbeP79eFOSSSRYMtoyfv6x+o5FDQkI/zDu2azGvi/wuWPO9t1oZKtzvilsVO8jSYw91CSSixU7txrIiThWXkAPAin+//FIcOYo4JoYXKo93z6EcMGu2wHmAtBrXcxIiTewebCEa2Qu8bun7Gh8vN/t+WFtAk9cqLG5o1KsMTZI4Nl7VzQyaLVh86vgDn8xjl9M6ZZQaxyEFLSU9gRzVAX9ExDLCRG7UtrnmpvfPOdqKVabrnA1SXURf4JmBUMrXG8X/kG4tHP2Bw57F9Ypubljy4X9axn303mDzd2kehbzKPN5IP84hZEzdiIcro+jntD55cQREDmkLGGRyQNWkm7GnTnNPIoe62GCFPCGzuIELNBbqDsEEtyWCstDbXAjqpOQM2wkVqPN87zhyopEkJ34ttZ58vSZ4ASbD/BzLvJnsssemaXeR+UHapvbk1ap4T7XpyMF4rsVpHNgRFWKUJ8Kh8AdCjrk9mnuVocDYh6ifQffA7aO7YLbVe1jR9+Q7kjEXNjVCnAn5Mzu10xTDyWJrhJYCGTSmGy8PXRsmIFrroRRoJ7auPWeq39es+/fP2xfjTYPdflQlJKF1bh/z8xdwVBoZ8QnnuovpjHd5xg02Km+SKGZT7urWQzNlA4eS/DxEEpQAACeBlAKqIhABz/9Fp4k9H3/6aimTa6gCYgRNgQOu1jtjCBlJzGOuQFvaKYkAE9POxpUCELBQRIzOwvTqnj7NbIM1VAHLLSGn6PMJbn9bErXANsIBocKXLdqrrthI8Cc7U90kxFZWELggOrECx8tFUfSM1206CRyJ7a9vYLkQP7qi2RmjejDtMCtIGo7U8wl3zZguHwKWcZzXsArcyP8JxcTf8OstQ971DTH/Vlt17/iV/suAYn4ksERTcCEsEYc5fjgF5fw0yLcvOgPHvG25TP4ID8vrM8PqZepjJmMJi70UlC4AIOWmvp9lDXnr1X/YI09/gh5tQWQIlcpZrh0GRI9eZ4xa3zHnIcZODqVQpOGOad3svgm2WLX5EyuENXavhgokvfTXQ7KDAN8efPw9GDcUQKAnMQFe1wVx/mfzLftwT8Xva1RD6WtqQSkjTE0WPEYY13Mwcor4yvKfz50z2nsgi0f1GzIDKJEBdTeHNmKGB1/TRJwCB18GpuBRnLPhYTFRGa4W3r6v/xcCn1AIdkTDgCatwbdAgxay/xh6l7iSN3jP9gUdPKFkVcavrCyGFovUWvhD2VT4qyw0kwtp8ctsx7vymrzjo4zCX2FLYuM5mKTxhjsLfN16NBKMFQ/3PctAFQTs8g/dYAB/si4yIU/zy0eF4Rzs38nsgbTIuLKc47zMR7Gk2ZaIx3PKFqz9l5MzFeq42BAnaMJA/TXgfGIsy71PNAd0TLxanK6S7lc5umrmlV03GM+gpN6IWAAC0nwOJMP9hUZ24ulonJHFvecw82CLiGnWPLFy/i/k2f+AWq7V5c8oscdof6twu7Tq2uQWfOePPa4NF8SgjzSTw69bkFZTwm+5lXZ9m6w1DKEHc5sCdjg8y2FDvPHmR8J+dxoTVF1IxewxX2HTiJNSRlM/ldUZU5mUElEw32I/x28lJOIs9fQH1nKGD+xuNqtdjy/MpnSUYvGDtoAJ2eEds+GCM5hPQz1fovRGxdVW2gJyIsfYt3tEy82tph8iBiQttqrpwB0lybesmH4Capo4SDv5DdBaZPUx84ZbPwssF3k/YMKWvzc403e8VvuxER30YYAbGSNET8/KdPp7gM9yKGy+jkV0Ypk6uJolq6cWGq4XXLaD8eex5WBAlf7Fuyg2/uW6MrKUbgQz8qfT03CyQqjnk7l3ACehH5vbVVru6AAaiRENE2BTLNCPQxwiDKt/9A1jmkoJ0RwF84SgYYMuH9Y7hFcz9o+22/Fg2pyiLLHJ0UMRCCXTJJRuyfhXQ1x2olRZBScITBvlNIxswrX8MNcgY6D9VJ8M8WAcVh7+TwQcKCmCXj3nm1mDEYDXNm2gec6Cc/sBelBoNmWGT7zyPJsDclAWWdutsLGOQxZylNnN2vJtlrCdoKfL1zJ74lFS94uhRPIqtSUd0zaDbBYEOQZMW/KJPLKw64R1Cn+Y82hZs/JcL86N14jZ2fr8rc+5+hbg9aFZVFT0ETJ0LjsC6UIt3n0YwktZBDlo6xyCQ4kPi2a5q5eVhTBOQpVHP81JrNh63uVBYYBytN1+Hk48rkTzfi4EOW+UGUimj6Ah5ZOP+ii9Puk38H5LPzKLzVi689+ZWVD6zCXH6eTTgdH7eVZ+HXhaf4sPRlJtyQ7qCZx59B1F25RB4ec03XlodZsZgfFVbAaK+TYWmUb5ObNI5aOZ3Zhnx0/5u5INRn6LuoO0Iyv2bCR4WYLjY9K5kLzyR49D3WriePy/IGv6eJN0IK/O0TjtBcFzqpsDxI6jUdj6wYTOwCf7ygEhjBSLuISWIKRckOvFy2u73h59VNbLhVe5KydiYW0zJtE+YTn5NKjuza4/PUVmLixIfOP6hyeLWYTREMNAInHgyjEdIrVGEe7erCSPQlphmITXNUU5HMbZKkqxoZxd1WnKBrjJqi9cNE+QQA0VxJ1GXrJjeK8cObbxN+5lJHwfD/7nAJg4hO2NL7e4OMbgWY/q9Lk7oF01M8MeOWzRGGNUdJG2YpFzgUuFyI07G2+djvGyZr/mKRGjCf4LsXvgrn4Hzkb6KGcAxg4Vu9W7Ewoip2dKn9KDVHwW9LVRFIlXiCQPOIEvW2pDkbqvuRlG+DXily3k3jpR9FO6RXNxQSrOhr1SoQp2V4ozl4ieojts3j6ZIPijoevpQtrYl+KoTAyBkZ2XBi5BPe1nBPQrpu/stv+yXrhtTBjQ4cJUR6ya6gATl+0PGch2tA1nnci5ZDESGh7HLO8jICGr6kWlVvWBhB8SB1RvHnhVRyUBPta8kce7fmEXG9waE3ILsFvmGAUsvgoUA6XT22wBgRZbY/TK3vx0Y1jZc1XMWkDL0sUiP/C+ujR3MQRRFyMbW79LA9Uv475YAS5sPo3BNoT2RSIEqtqFcB5/6dA/w2SjwD7IIR3Ish0A4SYV5ygMulYt8FjEzCzenQSdY+ETCu9PjcPRzqdeRtpmvUP0T2Xqk7zbjHCWIewzLVB8YmB1lmUO3QMOT4SsoN0vmTplZudDEXA1M3r4XxnF9Fv39v/XFIhdr1MWGN4bkrF9GOZvaBnp8grXazOeOwehCFWdaazNzl16/txCafI1uQwpF2/2bA1Z96Dc9u0UzjYtgdhxaUYDi0SkqFPWUrxi9dpBofDF5t0/iFFnl98RVjzge2LgNB7wYHglNDW88KEVaaFFcUlqfdYaPBGisdjbrvjTfj2IaZtgrzQobbUAxZCPVHPaie5Q06fMLVoKeCd3o1GWXWedRNcHdefrqYkwAlPDDq8YtoE3nwVMovNx/Yfsg+ZlvZrbbUb1oJscknzMo+8tm5uaIA4a961FbwNMgiFHt5t853fU0ftEGBWPpdJt2jmgMvpdoFu8RfUNMDYIS7sOYpyEPVvFRhzzhOtE8xqyIntg8kNabQwAh7MePutJiXn82zihwINUb8/xmnChEnFOuH9GWUT7jrJ4XfyXUzY8FV/ZG9pwoVQRE0MenHMsaCWO+37bDKhCWT5P/jXQfxnzZM3sDIAhRBtBVNHsv3LclPioGwxya3cI1AuqoOVFGT7aTtVRfVAN+VBgw5gg/RbUO30DPyNQsr6A26Eh7vHYrTaHtuirS3YMAcpseVPz0Sq+EvE5YmYhb6rZfDCNWTMA/Hd8fkpDf689jJIPwL8ooVpIl6uHPLUhVAA1lbxNXIaKKtz7McDKlAvTCPyJt1PfCu+Y3Ee8r2v66kdIXS+Z2N9GtYNsvI6nt331GDR/vbPAQ2bI5BNE/5FqHE4m+4RzGzpZlkO/F0YYBQF8vCJdCp7/eFzaPaSPzAOdfO4MJrvCuxJhnufDnvfHd7Kqr4ADLDxJXRQ8jNo/WVPsXVt9X+rK0J0bB0hvSheFT5Vqlh6OvzEdbYuk6GBaSVOhigQAACwdlAFUiIQAKP9aaKWsUL8ZXp0QoAJyrg+bJVWPuRaMzGSri5kPx0nJ+VktHKd6be6dkeVwuXlk4wQ4YY9SsTBSXswIXY4dJKsTrlXTeIy2CtO+c53fVwbBqYW5Z8Vh39F4GZ4iJaxHYlINSXEAkolw3RklRvUDKuDHosUbrXp08ELNAcXDHO1KbUXn/e2S0Hk6CLrbw/ohrXim8prtoulL6qFA4Nq55MHX72E970qQcHoH+7h2H0xHwS5tDNYp8BEvWIhcMX11BHY9/9TmdpEJJtXtiMSSnLZ0jWzQH4h52/H0qIv1YS3gSPyztCae41HFdKRY3oDH0ZCcmiROIQ01YGd4hzG4iEn+Wrb8nMOsafBA5gCpisUFn6e8Ndqk74Wbi9Ag3/Qh7/uqq+c6S7CtutrvPcCa6TP6lqiW88oeSpnzn+omrD04X/eXaScc/qvYLvfuCll0FzrG8wjudwDvN+CxpKz71swxkoAF6cHVx/yyeML7o93tmOL4fOONcpZtIAlCMmkB6TOHYzPQlAz/hY1DpsEpGuwzjVMjXP7Wjr9oi5zNmoy6Uf8JvqdsTY7teq2PA1KOcGMPJuZScUDmg7AZdbzx+7r/FmnFsJspPLbSKdD1JphSejBabFmN2DnFaDAVr88Qy2UzOCVnLJukKEiuFyQITL/a7SCavUxg7iK93d4nGKMdPDp8dj8fXuyRFgo0wrRzX5EaqPZZi7S5UfBnTs+ssrYAAC9aKZQKe60UKlQIfH6be6tuDw89JlrwOjUlNGke3WiMrvklK9GJouPsRlaMgf/c0Q5pjqP9pepJtWFX06lLFEFtlPIJ55Xv62bR8+q9eA1AEr6BDOg+FO7b8hFIC9bbTm93tUk90pEnZXnIbwnuUhU9QQWKxQs0hRT+/edD3G0TCBuTauxhHARlbWK9WfbuZikvQSuJUwNJce5kbxB7xNUFLisudFZBbAEshx5iob5129CjtB7DvkAh4jyeAOhhUM+SpWy0UwWzPLWxgwB6chYcmhBLUO9pI8W9pcx4gbI3n+pgNf/TEXcxJsd+pP9rOGV425TD21eeGwrfeB/d79m6UCs1yJBryRR1AaqClWURbJDSo56/OFEYQGkgsCs08wv2GKDskIfKtMnI83MicYoCCJOZwkX8xd8CKsfHzZTG49XfX0Rffko1ncCszZinMza32E4qsIGjXeufbrxN1F1gXwKN9cBSusMGIb+kRk9vaWFNBQxI+Q7DHr4J5AkT3PD4UiYuQBioGR/8g5KKodWxrhnPYJoixgxO/t5gdiuj22LC2SbF0Ol/POywkB5//R8jc2VK+6kTV8K8PqGHXAR5wOl5voTPXUsiATDKSrsK92a0aylW5YeZVVeqz0ZVGVRT+IsPNR/1wPoUnoDfCMD0pWRPzhxwNr0495LThr1/k2N3HD8ZH240AAUaLFdi7hIxIxGfxbJVYsW72B9l/lBr1aUWO4BxLc+yAgL3zGWXt7fgLoY7MMEaaUneV5DKJSHXtFP02gQPQ3YObhMlk2d3TXOkxWPlb73Canl/spSnRISGBMzWziJmXRsSdGNZVk7T4c0z5rG9KepzdF0G7nGncYhYCnEDO9qfFdXLRQHxxLQ8QKBtSzn2OHGsJd3uzYDdVWk00i0Xaw3g1CSG6rG72vbXlGmMH2IBUv1YqEvlrdHuO25d2DTNsGMLCQK6I/3eCG7oZA0Xd+nFbnsnqHcYGGsz8fVlm37WIuZf0NbWxEbFca2FHfmb2k7gPoPcYRp35+WnKiYM+sAjDN0WK0ZgvY0RPaCPuo946a0NRd3CaDiFTubGcU6m0/KXcA+Y39k2frnL7Ygb8zQt4jdRqLgnx62b7NX6HLoDN8TVbBYRIrtqgYr4MsR0k0l3nEfKHmKx8ksq4ydpbKx2SQBp+kEAb0XffwMl2y2oZrAjQjAODiUNoAWB9D7qSlapIFHanY0g3SVxOf+1ZWSj0hpXQoX+RKFq7VRzUm+R8x+fzx1n8gYd0JDzQ8hjgK6Tch1k/7a735oDgVDd6CbJZkU2jPeAHY+eEg6jTjM4xQNJSvHj5YPEDZfdvNCcWqwgsZQiMi6XxtUZGg009GYeuCKo/rHe8utfOCBgYlX+p7HjDUg0aiXvPZLSxw20j4cq8KfLBgVvoG4C0ufrf3nckeP8YS35QR2TAuT0w199tt4SkoVn9HM8VrzsKgnrGWQXsZB0VADsKs2tb+ZQjvdccUuaOBaXXF24P8gnmeDQpl4O9W1pHsHX3B0owfU2JpekRpX+biuIb5ddoUiHC/5OhGQ6OapAY47kD2GFC8xeptU10B/i694eIgte7tDrdZaJU7ofsA9+tX1V1/uIx7rgIfszkifpCFuLb5qzgeHb9Ql33WhyNMH5Ie18u1qzSpzGpedImolfTKfqQm49H9fEvzHXglXz0C2KWXOewzofoIsdLE2S33sIciIXpG7wjloy76mpNtqXfyVrBoBFQMjmcWfyd1SBtSemcFZXsMoD/8iwiUqDHi1oC/bJioDyMe3+p2IqmQgTLLEGvoM0hcMugtWEMURuRfJ56BgHuQm8e3TTav6CBq7SQrb4z/KaGiiwL2y9ZxmcbKMxqrZXHDITH8rQQ0AQoaoZSYpAZzwUwLhhpgWQUVCj8RLrMbxLahj5Qyk+vHknJRFlMxKk8FZPqv+Z+wVJ3riIasGeawdg1OI8j+dQSS3vC852lDHV7b0OyEb3EqoKtDegyPPcRPC/lKmL/4+xX92SwkFfBt2AuKP6HDvcsZsfJLCGeNmbpYdAwXyuwTEBemL8BcVOWerHgc0cSZNBRMtcJMbW5D773m4muyrEOoF0o7bLcu4kXFkve+Cm869jsoqCG/3TFkf7aYb0v9VBusOV9qfIIxVDcFd/qU1JlDv/efa98IK3WM9noYmHIdURSEp5Nyp8oCJwJu6IxBx0ahG99UsYKl6cIKKUbkZp3s5tNyqM73iZtZsrXtP536KG7C0B1DmH4OkSJ6+yVervNAd6AwUY99+Tprtg8P/+HHtKEr6om4qRI8ww9K+Pq3xPR9UN2XkT2qEAWI+w16xRSMHMXtNdPcssmcPS/MhNJ1sWv/XxcCVE4sLocUw5qu9Sjsj8MnY8e9k9x04gsf2oVF20UOv5eUzjVphxP8kg63qS9ONM02VhK+E4kYmK/7ob+wvDwDtVQhtenMZcGOwz/o7G1H46t0wDAMDwdyIyGl3SFhKNrX1oCZrmi9V5kJp724PTDJw4rOeFVFJLRGsBfznBWkwjTAxm6z2QfCgVgUxIXF1e6aSuFQ6P026GUk1bJKF8IoRPcOxI+/1mMJjok5LE8vHAKCkfpjIyorbwsNZLboxxb/0fsbHnSd2tP7n0E6UXcYIqaTOViefurXtLwgcGjYum38urC/Rhd9cpWdfHq18RMw4e9iCD2MoWJCMwFstOdWX7a+BH7cVJ3v8SQUR0jO3rch7fkPJQY5T/9Um9c78+j/3hw0tVbN9dUxmOEWX4VtsNMIMs8eT3WjQjf2APZaj+/BBagXLiuLndMH50oF0aFYBIuVLPTf8y4r3K+i43MtYBa1oaR+tz60YgOBMo5DJ3YKU4ZKWyOMvfCFOWMvKClJf9RVPHIDK2WsBAu+lBqoMp51ZUoLfdNF+2zbyyewmw8BBiIbTapKMzDnu9k11GV4s7eXm0GUakp+lJTvIJip+4WOii0DbWLU3hSseXKADtZN8/iYhL4t87yYuvEBnzdACZKyIUBAiLG/kBeFf82K8CaK1skgJ8AAAnGZQB/oiEACj/WmilrFC/GV5qYHAAhjqsJe6+aJEH0Pg9JJooYZ9+Xbn9PGAsqMXxh5s7i3PG1A6z7THU9dOd8ud89eAbzqpQKZk6r4f+6MD376t4aNAXrSD7Qye3xiy/oJfimm5IR5wbeuPg7sG4NVWNCmjEw6NZgvdfxNvcqByGX/iMDGzd8uFviJHeqC/lLEGZ1Titt8cgLS1Wt/rTIhiU9Kh5zUUs6ZIRd3JY01DDICmPwr8Bd9oIyZssibdgfyfV8JxLoUTF3yb3fgDoc9ckE5HxfUwe3YIcLsoeacX2mfieptY7wGMglKM3vgrhbBhT4pxp7Sarcg9KGE1Cz1HbA2RQwbWKwEUMKLqe4ACSAjth5PN5pW0wmD04sWvZENDvNhSorFrv5xXRyMLFf2QogBHxAzYRD7jE2oQfzSZniZaK0V4uu2bRqe3bIj9fPDxjXheEGqy/zVcJuaX42/wD+SrtrOHOedztfroG6CBkbvBUOVSR4XxlVlIISzfBIOqFw69xZGL4wkbK+fhZBWSBRH676ri10wZ8Q+QyqSz8/ytXyvP9ATAGY6gxrRvq2Q/JFBD3pjA9YoZR/CoZVnm0GXmmQPrheGa3S2fHk0Ef2OUuXTy/8NoxoBAFj/ljQLIm02XjCBqI+q9N3F6adJfi/82utWpln7QofilwBQjqAJSoe2MrUlPd01ni5T7HJVU3fDBElohKjclZQD8zO3LSTGnjQKlmGxjaoCZ+5+R3bGtKa0gzoX4cs9yKYttdzhG8ISlRarKC5xc9n770uevn1LU+DUJpPnqSDKhnK9jIAq0oEcMpy2vyqmHsHX5l6vSGAetN5+0p8h6wGoWN2/F565yIQhuuv78wWla/ZpydztS7RlC77qPdExDn+RY8hc+5irui3OLsxHA18hu/o1f85bowb7v0EKqnluboc3FGuumid8iDnRdVEv4u4Q0QytsYGNGn/+wnjE+dOwO2wCqTTH4f36PbRed1uUK2fZCf4e+Wif24jzgS8ShuegrjE53vyZoUuxCntRBlQyJkabeiZaBW0CzD/lg8L4qBkPFZli94yHyyMbD99KVaZ0dUIMbhGMunc9ysB3FqMVx2DWbCYxlV6ER0jkSe3GxkGo1WATPN8q9oAWocyZnuSH0PYprzBSuqXD8qaVeuV5VSggHHG0b6v81egNHXgede2tzBud7pO+4BwnKMC2he3Vw9nAaJRlLjsG2kF2NeMxEnfIG5ZXK8ydfUvGcIAvO2GWtPQa2Q6HbS7dr/p0XgybmPZUuVnlK1CyTq5l3sL9oOJFS/BIP2m0CTJ30lhggQuPxvchmRQ4UewEK4vUcfaWOxCh5gUqHC5Jqm3cCPCkN/OQ8pYOW+V9FRNsyLt/P3YTRWgfK1QHil8y6udWE0jm2nzXmj5GwaNkMjszJXRbUdX7w1ZSamnWdty30HU1OczZVgtaswAHritCFhUrVbhRbeX5UGPG6ZmswmUJc1pPikqYqNC8SRF6aJ5y4na/iUoD01r9rPRjgqVy5UhIP2QQPnzrgNToHZEEKfXTYBQHjJbE5xW3AHHAKBoWBRgvPaYyYCa0kEtE6Esx0urZoDjHAZtuqWe3kowLv04QsD73QFHTTPlc5p64kDsxZL0Gi0WgOxyGwKwVEXV8Bb7nDQPwESnAZ+Wpb7n60oEE0BliEypXbSkKFdqkJ/duYFdAvgtLqqUhr5rxBrNfZxZvZKn5Ibb7FmkxE/adUb/62S72hlBDd8aZBNy9mgt1WuDEBZ+X4gJi5fUZ5eLK4LZmdNWq6lKB1/eEM412EhXGUtU22bNd8c8Cy9gf+OTb696KYgOrDP6UKLQv+AX+lGNUOKmC6Sp423rMbvKpbkf4F+fKVHRq8OgG1DEYmpC8qctH5NI7eYsJ+RAAcVrr8FkmhYK6i2RDKSmadePoawNQ7yXDOQaKSGswFL5zgU/S3C0XJhAY2eBrxUmtjSYjP28dxn19YCsveg1Y6kr+4q41B5HOxBDuVeU2v1uFscUBaF3eo3pAAhVdPmgNjKqxNVGOvZhRU1+jEPULRvGgqCNJ7MI+uHO7gehgjwzzVuJEnmObj/5aDmIjI71PXP1ettw9TPJGfZtNME67dEzgUvE4dTINBl1dgMwzDE15Y36GcvyWp+EyT8Zp1zdTOatIgCqq5KUsV3S9bts6rv8t0XE9q8MQuYRGhp814hfFOB7ObwXbdORMYfAj6zvV+Ely1+ONQh2pJ0Eb1SXbevCNJ5/UIW74wyibkl+ooZZcvBn8P0kuCJToomsMnDluHp25gHxauPnxoWGOtgS2mt4yAYj+CZ4io2kDygh50e1etIG3rl/L0ht42rRwCFBi2vy70h+ppjPdn98w8phKrtsWsgjF9t35azNk3pF5mtlNkhkeJa0c0ObeHF12u9xZnoLdGMdhYu9WvTzwqqvP41zIPbwssvVKu7cn/pGoAxOdmeqI83Gv5uFEwSkU6Dle1sxodGf9OCVseo/HtzUsB/0NPtRnUJPTxhNo9C4u2HQfcrhbXzsm0xlVpgXp973HlOYiR0BFqOPrxcbMQ889dEs/xLYUMzDhggRuJumdI3QzbSJKpZ79ntstnKasbGVbluT2do/DQeWvdgY8duTm7F3amV8I51X24OepH+IM50YM8k198p1SPSHe7Ld0N+2g+1dZnSF2G1LnOF2UOZZmJlVwi5CKNbrGOnNH/r1EsgUdkuOhYQ7y5KpY8xrRVJkv8pDPZT5YY59VVtMtoteVyl4awykge314tYk/yWQVchmxoQu5mxaZ4sS850xT7ytdEfCBirRvbHUOlpM2yw/3Rzm+Vv7sk2aZE86v2L2fUXWwB0Eb8qWwMiuFZCgZX/mxCfc3llyZYwLJr4felcmBkB7qWi1sMmYFbF1mcrViyTta6vZfmP34FCx+40uSQ1MjBlcWWiIgV8wZ04O2xsnrkGw3d5Fcm+xJoVbEjkR+phTrUtWWciiCFuQAjA54a8pRX3eeGBlpxhvEXVJ94pKhF5a2KV3zh2JXTGofWBTsVxV+lxOiG0b95BxzoCXO264e7FHaxrkWlBHo09HpM6VA4UWsJRpNtNUrr5h8Kf37kAkGQUs1pCZyVKbK5Lvrwoh6E2MdLjWuQvK7//vvjr5Il0UEYhKL936azRukkdm5XkX6BO6jTMtjc9/UxeEoxbNXCw8zjP7whrgswlDyIZdV1nBCXqXsm0uDG+JUeaztBSK9ekjrRkqNMuN9KTNtWVE6eOMT4YbZbJC2r5qbPeXtgZFwk6WMWdzwMcQUE8wQgMB7VWbEMvnFyAYeRnavQJrRyvxvxqzJ9Bp07AYH7sYpefTAAAHSGUALTCIQAKP1popaxQvxleWQ6zgC/+RwDl7xYKMfu39x+Jx62yy/aLG7nEKbpFhGScyEcYfi006jbsYFTCY2mjTbqw1Jw3cYaxKh5qmZ4RZnrsgrPtjSDnSCUyDHUGRKWLmtfmgTFfjoYXGtTCg94XZQS6Bckh8Jh3x6vWA4fhioxkTbWLPy0j3n0GyA9lFuGlTMMkL8EOyxt3KBIU0QVN+FuDY6RYnR76NL/z2c7yyRwtgED9qx3LVgq8zhoWA1m7zCirN/Zeq2xSCdY1sPrTeobYDP1lcfpCFGwumP1el4XimwAQEbgEiq5Vsx5sPoSC79vAc6RBtra9aNOrjJU0TZTMa/JbVcgsaHqYoHrt4uYSRPV1RYqHNVaS8Rr7TIA82JEPYzPbjx6zF2mHnc2chmEsMbWqACViTrvC1o/KtpcKIfJHd4cmdKpaBZi/sdzyfMk7SDYJI6GY41Qq6jdKvj6D6johSR1SisQjHVNMl9JyEiLr9cvJQI8WiMchqY4rpbmyErLwAp6Le4clg7sbsVyiGr8gmj1i/FGmJz8FqJTYnQyeGGN0APk4tqpJdV8eCWeSDq+3rJP/JBRm1pfd/QomExxZWtv3icB8KtqEJaHUEn5MAhoD8qOtOtq/63jmvuGq6CsT5NyPl+MBUFP3FGu6pzah/Dr1d6RvUWg3xnvGDgEYtev6VBIDFDgw92J24g9ma1+wRopYo9xgOlZAjwCmPceGjwCZS9ATtCsRrC+pPSzEAFq8GgBcNKH/PpzqKsqBYQf+22zIQwbXO9qkR5ftg2TjXB3BOPDzTwUR+GMBRfWSCmlnFbEVjSoZRKHDKSGDt3xs/zy1WZWvOu7aVlDctHgWxN86jZyCBJvclStRdYV89Jp1MB+XiQgTtMzzJ0fzkXd7876embgvs16ElSkgCUBy3tU4u41rmgv/Cu3khlq4CyHWQlPxyvErPExee5PzM8q7UfMo/DYbAsBWx3MCtG2jsgn9Kh3kmDF3hPsyR8Jkoof4eU6ybpzeVsVzGNECS6UU4gRwCRogaFGWy4vHbMpnXpEUgUyxECtbDFCz2XxwVGsDPTueVmGuaMqP41dTLy5ip10uowgcYI1R8dEYbfYweyVYZc0gWOMRMnC3dFrqngpwXNjcBjKc9Ub+VvkbrIlMDKqFIQTVu5rJ9+gkuRh23eJStqejH9Q0p7BGEYuMPgtq269MkaDjjzLrtTwPHvLKbfkVK8EZyKjUPPiRsmT0FFa0n+MXp2X667wwjORWz4NzeG/HnaGK44oW4hV8pZqg2skXmzhUrEUZ7okiSrVBa1famC0S2pX7frbrx+5d69eboIGfx4VGy619JRAiIiKfs3FkzK2VL/aUDdk9Mz30VU3ZjiYJW6nYMylS7VflS4PpPVZz3c6fiG5510USzloZ/tfGUFN9SAXxKJt+gxyrxPKsKF9SRqf3MIwa9tt3XCi6Ptk9JuVSMjY0lRgQnYKd4X40Wzj7CTPq6PGCMNii/g1husJSg/Xvh/6VGGZRq9szaYmyHTNkoLgxWgS57nJGxYAqcoq5YQco+Wh15Kyxrxr/lm+gGEX1sMFKYcpCM1xQ0KK4YB9cTS6cJgb0VdMdNVIoYH3jbfim2CE1FIX98/FHql7q0wucGEvxANQsGqrgIOUGCZupvCtal3lJUsRt3WEo/qqi9ycMltBG4jnf3z7qa+sAUqBfeotKo0bOV/JLV8I8VDensFHvtJK8X5gaiozYF9vFIQtJvIisPGsTXMlXLZ11xTvLbQAQ8fcsMFab5gFHjQzu9HOCFXl/IorKCoG/bbMDWv2aqUpf8LEWERWHOFpcaNMKYl8+UPKktRk7+IMCkh56ir9ibIzNGQDDVINnrsVfYH5RDaY7xXcDYJxCNeHPCDijRRITTZ3nDQ9LMRCQgq7RvxPA83kJSTXyQZChM0KmUg7DefZBrIZsF4IApg+jopt7v6OAoFcq70K7FJ3qX6GuFhmRh0OsgqtXEC1vZpxCA2DiYVhAffgHWMjCceFpXnIfdmVNxfpTF89R7rPMPz9RaJt8jyqJDGvmAYv+/QciBDVEjVqNhtHho2skHCem23tnbtopUU6n1IAEgDzPA6cq8duWhYJAVdLOPKkI3Nf/XgqWIc81x9b7huwxnacQOitJWyRU1DqlVakpHaGpCBc7eWiGlwa9WpD6tu72FRlb/eQymL0Mxbrh2sWu9S54uCWMZxOhfAj3F99KNZJZoWhIexebgoYEMZtH5pRYVx6F9Wgt0RYFRJXAh9hX+lXOS6Z3QkheIouG00bIWlBfXjK1YOHVLQmqUmyizw1u15vIyk9DpiRZfRrWaDEok6X8dXSsMsBeIcw2PJ3+q7Yi4uvXQXx9cVxSB89BYOCteu8OB1vq7JUEmRn7XDBJoa+3W4SmgatVPVmCZE2c169Cdh1cpuhdOPwEgRVN0h20+uIVIGOkoL9/7hzI2u4IWUWVosA6RbIN8GL1MmOEAAATRZQA30IhAAo/WmilrFC/GV6dEKADHpzEkf7dzeZuFVJaY5HNelkPWl0O3lLbmwtMguQMh0MBQgP1vn1gXOkUr3JpiHMlXgKTXx5fQ/hLCQufQz2wJrOra8aDmTkFMDKz0VHUGIVGXPC0CmC2aDbvibyXNLY9Oa2sh8Bc0zKuEYaJzMfpx/8ns9+OkMzrz7Pn5ax9tKb3iiZP6ozfLTTHK+KWm/nlX6/4ObHbcGIg3EMw/ezNKU/8VVg1TQaVuq8Hpn66tY+bI5UWHlCwnQBgwYO5wHMitQ/GTr85dlPI+Ci4KbuEyPPytnBnqcwAD+/uVXeo6YDpFpLcV7hxoHN2mXR3nadZwSKUQdnuB+LnXJry2Yna5n0Pqag80P4DIdiopUlgZ3LDk4EekNyrWSxrZV/R62GqMLDYEi01Uh7a9NEx0U9qs7/vvQZxyRJ8YtCNwUjYeABvBWPKcOGc8Cxfin4nVOaJsLM+Jh4+sAWCyPdJ7A8+LHnSTiZVNDh9zdHewYP79PjqEbnBQydfsCd/S+UyQ9Rxn1y4uviU1XHpULZSGYG+AsTGNSFCpGDnBuMDCJZ12H8NDlbk7NUeKO6QrQmBCgRJSdHOy6tCUxzncTA8qe3E9oGYmKlC8gPdfvCnrBwotvhcFLv2HFDDrtoaR2KUTn2NGIJYflVLi9uKtiuV5t+0HKz3vlg5GxIGLh3B3R4TDypJLBk8Sv94vATE3MSLj68B0RB361w9nZy1m7xuLsNmxoJ/RTZbO9Z2YebHo7hTeWTMoILPMWAkHnlwBxRUbWhed3EtzemClZqIWB54Ld4W5wf5lUsLzEldUB3E1V4wDb+CF5aeZIBEb73y1bKWnBgQMASvMqd3XiSp2mOj2di3V0YYSsNvdFbd9MtcuY55DgnQaM6kRFd1lj7LrjHp0kjZ2wmt5uKJN2We3wTraNER1/eGdSybhZZb449x0+YnZHUWnlOzjOKxhw/KEfxOhrAfrhaOiukcDm0pyBEcuqC/zruYPOkgY0h66MoqMSoKY8OC2vD+231MZXWQ2CiQTOCn2s3YlF2+93dORVqrL2RFoWVWMMtri7R1UEbKL2LA3fWM0+mqVn71yHQLIjdzGX8RTBBXA3Sj+M9tZYgjdUje9KLwLXQAwANj8Lq68lnG5ZaLhj4UvOHnsDwnq+A+5ybP+F9jTjZ5OANoXeOoIx9bugtWZse7zZMmjzT7jkiGmEz0PZ52Gw0RfZLe7IeZs7FcRSk2qr7ymSL9+oggJlm8nR6C8OWN7EiVRvjK9vszdtNAB2LDlRh+NfekLFpuao8OBCY+UPq6osocpbvQDGlXx2k+IYF9CgMCL8vDWnK+Fxi2jVlR35/D2gQ/nY/5iDld5YAOLah3r9HYAb8OT8dFrD9Ha20Ggs47+x8NThsuI3UvCD9QtVC7ItrxDJX5bz2Q8J1Wc1tFWGvjgvqDqiGhOFHxa3fJLP82si2sDsB+Xlhfa2hWYm5csSRKIzq2jlI6P4rP2mwKsna1bdCjXtra923/2FqAF14EGJi1Cc/ymgIxYrP8lKIIoI//JStf+fVAOhpwebkSXxvbjiN12NQupWO8hsmFUxo2OOlzzS/UFKFYfl23phLv8LK9hHs1tev8mJRVdfOjq2cH6BFZhAAAGO2UAEJwiEAGP0LniUGYv/k0DYsdngAQs0ZhbUhMr1zEc7mJruVu+Gw/g4F47HwJcZSnQ/2kKLzIpPIHgaJVzE5OEBhpTpYhkbl2PijJJaBu6VXe9zsaN6maLevS0H3TlJgaBz5Qkl9kZUGjpr0VDPywAxHdGfY2wGlJrBPylqQ054F9lOFx22eo9kE+sk75iayWa+U1KOVF+xW32Zwj/NfV3eDeVYyRUxeUhmWLx5EZ05GeTLv+B/mk92A2erKUqsVPp7n797EoRkEKhJkJy3ykb15ebF6jRjEDd3vr0ypYkXvCTCumA0IFw/cKnBgyQHN2mfiQSsrCmX7MougJOy59Uz7q6yDUG6tkreGYAAA0EbWzWU/6uAqBwsZr4/QuGI/FahjsO80VTiuJx5UIvtCQJ4zwQfrGJ4umw2WSng5XSUy2dNNAFkzF5CcU2FXxRj2F6gDb6J9LWNYLel9iEyJ5sPNuP4cSPtRlvggPb3KnGKvk6T/9DusMRPC0uVod4isESGqg4abKro1U57jx9VCKJnWEI7NzI9D1o/XdCZPLbWvl9/eMRJAx0z0DdgleDogV3ebk3eDFYT6NWazsD/LnvJiVv9Z8NxEktesASDZ9XckFwOdVswI+TsoOpdfD1jIcULAMrIioPMbY4agago0Xp8UhOqp62+hZwzDeghwSb57V+3tAFJiVXMMlrdTugKJ2Cz+ROO4It5D54nKKPJxjB8KmtAu5Avz0FSgLTPB48AJxDQ9q0RsPeiHrR3paHow83BVqvkG8XoVsIFm8S50s/JaLSUiNaJF+fCCJMytysuMXTTYY4SYA9GE/M0052SnkgFBpTHUgJy2qTghKzt+7t/mTqB7Uo/ILnT55AADF7QgvpkNo6vXEW4L31vnrMkq5e2zL0CMAAAhZzZ9kclZxT4QEUAbS67Wn0hV/RbHlCv16p+VLWtQg8hQTU8RV1Fr+kUOEuMo0ZOFsPsi/J4c8ccPrdolQLdU9el+01OQ1ntmAdTYjZ8mT4WQSSYzX3di6mma9qRVmwTRu7g+wG9ZU6imvU2+hkvzYTrq9KMKtfdHDQAnG+GCq2YC73glOtEZ1MOrzqFmZk9X20KzC2YzpdCk/Z9fPXOo5awOuUc2ZaTq2rU4PI7vWyY0BnXVLS2cowKXY9eL/7RNeU2XbZ7AwmnBn487ZAxFbXOS1uphEyrh42LmssgcdhwB1IDcYZJFfYQHEf9GJrXBRSycJE3mfk6gymiC/CDRCJThf4jecf1XxwzhDhPUwpqO01INJdmAWoEQlgnnXNq/d01Qyzwq5Xm53G7h3s7n4aiNkcr+WHUV56AiqMPUXfrpVYmFjj/kSL1ZmakUwY0/1KHWvgSLPf2TmpcI9wyuyxAhGkrQltb6wA9rwj+ScNQ/zfEkIrP+GxH+tgi39orQHCsFnbNFRKXnoWYteRpF4C4LIC2LWN7O9cgegDb91qiBK0XrI/X0jpoJaJXVGnNYvZ9AVuZViVpYM/w13Q1dKr9+eHuElxoPJJ9a5Rkp9ZUeZae8VjacXhezixzImi6syzdsuNL3YZyg4TogSa/ZHNaMmsBS0RBdbPxJZ1hvmaGlCz7N4uDr0v4z2k0q21VvjgSpTFeqCd7lhECGaefFaJn7CMuybwUBomVX8l/bqIjuX8BprCc7CQPvI4qTGXSYnyIhIjlyQBT3ymb4VKdgKVzpwjCB1JYk5nAd6ia+XIofybVWnrcbZ8R+3vCNwLlZtCw/FyMwEAM+7s0W2RNt1LkXIlVM8QmGjB0dzOF8eDbH5dFfFqLlkNwVAU9RPYa7lc1I+fyV3o5y2xiQHckD7/Rmfe8wxNMaFOg7LGRUsZFIJRLf6YAaNbskuXxWn1J6PMpzmxLADevvgw8DdIS5Q820/YOCAaD/1thT7wL5XYyqmEeRAezNFXUrE/7afV9JTlh9jB6Z6Oq/neVRC+U/Rc4TOBk1CEB4GCVExYx+NG9pEPQzu1CCcWBwBIe8XuN+F8wueDLOsdeXJ2zCkhhLKY930laEU6ipR/uTdbzH2tMJsYsHNkFYGcvrh6Krg4OD6zLm9CYCrmqCXoWTZHKtFzvwzVhqCEgobgYy9xLER0hXI3u/d/1ZkLTk0oNsI5mXU5AAADtGUAE0QiEAHP0WniT0ff+zEr2S67gCZxVmStIth5uJ3xsavW1t94UPKHvMAtsmg6lQ4OncIO/V+VbJN+K0A5o+0YSgUKfsrp2kPMr/VBP/1R4T0WU/jBA6b8inewrz9RzjjtCF4EkHpQ7KFVAIJMhfMc7HqLlAhgFMYzfV3TQjKEPNaFyTvMTFIJwSWhvzuo7dSv1kiAmr/QqYnP3Ja48eZM49yvdtMic3+8AQ0s9eT1H1wIhH2S5A15UVoRi1z9PatF4QKnVza6yNBou5l+3ZbMHY0tTY6PSSq7/2tgI0FSz6zPn6zzQvs2sgaVNUmfVA3dWkT8Jfgm5jJ5IShcVZfzMiwq727we3XmyEy5bwpPy+MktC7E1rYPkwfw2ssT69iC/ayxKQ1y4IiELX2OiEOWgeKeoOo1Z4lEV03oCT5iK3JDVRhO2q6LHSkZTxUuHYn1gqAAG0HPJpL/5ZF2QdkYX//64+CAA+CPvFe86jIPSBzP1mSeh+Srn3pXAuyF9GT7q1HcPUDmFHyQ6CByP1WqOjSsVrexTt/y6GHa/65E6sQBz1eDKLPRAyRGp1vrM7DnzhqhoJTYJm74Gc075ppAd6pUXMWeh0aU2zizJ2Q9gF87DCbx0AAEDFJLB9kNJ7mdrSaOGjey1INXDxHFnSW0BNHbZ5Q8ZgTgkYVGn8fpXPi5+ky4JxhjeQe65rTH9YKJf7TfyK72uHNzWUdLr/tdKhuGI5n1TeSkkTYQZX8GiAnSroTaa789leBw1XsSRmYea+a8u58Ofl1X1BR2Mhqau4vteYsNk7E/04bDzIS7k8WSKKIsAFyw31dmLbbALV8j9tiJzSc4v9nEMqaY0JwdrqFzMeGM4GcZqtCv6RZxBVAHkef4JhAEd0jC4FomOAeNLdlaggHUFnPD5iWNsUiDL4qpa12j0eUGexSGnJUejiDuodDm2VQj5DwpIdVdEl5QjF91yLSoq2EumvP/EhA2F0YJ4UePXbxdAQaYP7vm1ODOULLkFL3H9g6d49+yZu3P4PP/Poyoq/0RtpiPf/U1NWSP6fgm7oWabfuay/w2gaY67T4g4FHfGVG1ssmaDKkjdIe027+ZR09ja/KBFVArBZG8Aw8VGttlNxCQp93lLgX2+nB0qzm1kASuf/8UYB7W3QVXgeabRKmt9JH9+yfDHs9V5yCL4TCGYGQAAAMAAAMACIslb9a6d1zTgsPRO6M9vDoALEFgpLDe715vHbh1sW8QloAAA5tJWuVD2iPQbuu5gQAAAM1BmiRsQ48a9IowAAADAAJan+HuZLllioaGEm7aJ82VJWADpWm2pVFxhtuj0SbgWEnRyz00sribtJXAWDfaSbQq3Ia9OtIOvJ3JETow6RKYLZA6CkcVR9kCB2KGua6V4fmKiJv2QcQaJuc7EfDodBnTLYCU0C30GrHhN2kK0IP087gEfcRCQk+HBihtjiOr1X/3ScI5p5nq3dmm74qFXCuecv+jOK3lTpT1Q+Ct6LkbuHgUPpOviWa7Qdx5PSadjaUR3O7uvOYWf+A2UazgAAABCkEAqpokbEOPE74n5UUJPu8fcXVsvqHzID2JVt9ykRJ3QfUThCYyc74yjm9UCo3xdxSnrZW4dbUuYnH+1OYlBPPHtJiSwkM5JDiEI7P9ThkNZrrNRXyLocieZ8BAAAAVWsU+KRN4Jq0xN246v2p//SuasiX8LPrbdVke19HaNP6tJAx8zU7alDDLlnS5TLxOq0e7HI6PEMAYVUobqz4FKG7fcn8SvvamY1h0XD5dtXz+snA7VkP2iZ3ES7RiQEWgP0tuaWusCxH5gbcAWPjHD8lYYFY3v4FdleRcYv001CB3JlT1F6oJbXNcZqdFQb3rDpCBpIlj+YgRu46T4PlaqeK9KOud0SpWeSjwAAAAy0EAVSaJGxBE/9fb+ADi7ugBoOE5XiH7BEaTLC9W+UMhmhAWeKEIiJpTXTzn61FoUF+qmrTWfmSzRevrNp45RChXSaeVwtwWbav5OwKT47qM1nXRHEa0xoEkzHKJkgMzxsP963rHIz5q969THrE/WGKwFX8PoN38ssSJ7Ld6EI0edz2uZ58sGP2TJ8no7/LMhCUdBwYFq2CWJOmHTfK5Muta0egPTFAa7l95SvSGLoZSW//3MtZzkaia4pFz1H/SsIWhvsiARwn3s7uAAAABFUEAf6aJGxBE/yEOqdgP4aC6qR4qEvLa4AAWIap+MzM0OIUQAQhgFjQEqJ7ZAoHNgSCPqMdUheyzS6VHw4Y5pAFCmXcKCzG/+dEz2DXiFKppfzdAFdmgh7RzVCLj21Tmyvcbo0pRTWI/bCmPf/eA+wAFoxMCxzJZBJ8/ufM26IzDuC+qDf+MoCxYh4O7q4H5F74NKgkInPYajXZoPanx734LrL5SMuteUURno3dXb0+BpNZBNvcvjupO/wLo5gZYUE5qBNNvs+Ewfx/cLklaR6iDAZUv0JTRckBKOPrpS79CabIbuYa8wDk9ITa8+JAifW976TH/BhSpAm0t+QPUOfpjbxv9jqbKpOBFgPSIIaGBgOWeaTAAAACoQQAtMaJGxBE/I31L+wW9Bw4I2ue1Ji38e/dlYQkQaJhbjVCCzMcX4AMTAyJTELCQfOKJLzVnvObRLimwM1OTZ1RlpxnAMdtPTSPZ5geFNwuRMO432PdUjFrneGzWdzxvRKXngnI7owwunfgt4ehPRgnK8VgTemgaW+GEUHaQBAwAba01KHeG39xOjMBq18pTmhTAGskES+Ijphk9RBKs8cuJP7r4TUPsAAAAdEEAN9GiRsQRP9fb+AA1Z405m4ADs5KyCeO1AEJMY4CAfDNHXEhNTEN94l4d55z9FjgGQ9BnFKa9rJh49+qRNWU8edZIGCVpfbzyOHvYZYeAntOzxFcARDLLyZymFTjGlRd/NZOkL9ut3YSYYm0rlHpeSP1MAAAAXEEAEJxokbEOPxPuTXxHuMOl1ylUIv2gK1ixl5wJyveJfgABLWmUm2lSUEPN6kS5zzNSCpgphauBAHXIvCVmlsr96DdK18PaZiUG1DTrBjWyTQlIi6M1ga5Tn3EmAAAAUUEAE0RokbEOPxsINAAAAwChQDxyMHAq26pPtdIHQ0WSSJCJAIFj5JrRlqYFwSUA4pPCoVaO75dY6HjtDlXAeVcoNbpVCfKfRqOkN4zx3SAewAAAAFRBnkJ4gof/J9+R77oIhTyHs8CGPAqnSYfKFdMDADqfIB3DwndzZklT6K4tdl7C48qYx1fqadkFqpaqiti/f+ZalA/ERsuTAB1ML3puuC8lv7QJc4EAAABNQQCqnkJ4gof/U34uEKukqMw1tQ1ZZJrWhuTn/t8xW1KaePr0A7roq9soIsDUW0tnLfL5neHuyXak3/Jd6Q2KX0swd4ePZULJ5Jk67m8AAABpQQBVJ5CeIKH/bOHz/WMiunLSmwFk3hNw3ZMW/1Mq7VH2LXn/HlgLxxam6zEgCpDjNi75gJAKPvN4C4ssWDEkF+Q05BW4KKCdxmnd2wg+OcBNfcNCW3ED2dDQPTzEPmwuXj9pLxq16wyBAAAAjUEAf6eQniCh/1r3phWSXn1EWeQbxWiJvZbkoJ8167wpf2gINJEZFy+bpclKE/ejclS7qZH0usw5AZHUJk2RGkVZl3ZBcwShR0+c21r7q1qOj5Hgl6DAmga4IvUSLuBUxkCtG147XZNJiqt/03+LCJeJaON6eDi46QexP9fVKj7t6pO9CJm/dXLAakcZuwAAAGtBAC0x5CeIKH9eSHKwfZg5AQRjjq9DwJvmj3sXy4h153la+jtPyKkzg6Wn0wCc/yhR9pyBbZpVBwcn7dkfRsKNlbx+sAoQvK3pCXISBmLBrsDk/2SKzawnCvN9Gxybbu3f0nDhcBf/hrxmGQAAADlBADfR5CeIKH/tuzNPs+pEjetx4vm16RIriE103asidEP6j+GjsVHfiXSAN2bdGYdxppCABHi7y9EAAAA1QQAQnHkJ4gofbc4UTO1yJqAlhETVEFE2FureONoVATgqNtECtuxeztPHNKNjtYmQu07EgzsAAAAgQQATRHkJ4gofbnkMAayw5dVA1rz784inhEmuoBG9wukAAAApAZ5hdEFj/ysMOCC0KR6uusO5F2jcqiNK5r41n+I3E/o9h4iNTCEqemgAAAAzAQCqnmF0QWP/WLQQq8KcxA12L6iPd+pau+fL0M26TvGtDqAEgbZ84qKL25mZH1X3YCPgAAAAQgEAVSeYXRBY/18hIKvy9ZlS2tP+cPFwb3XcaCICSs2ZTJzmIJku53ohN5eMkQIUA3uguX4e5y55Y1nyJeBl9MZPgAAAAGoBAH+nmF0QWP9c9GoeqVslWBhkDS01v9zvVM42cKkXzRBdbwWu85LgGhf1kDe9a/xh3sgt7U5PMal/ldLbUJwC8hCqG3cFZdvJSWZQX1UtlmCDA5bIicpBoBtVIAaaEZFOIpW/pkWWSmXwAAAAPAEALTHmF0QWP2GLsH2Dl0AjiVNludykuXx9fgDrKUvs3XJElHzISQJ1gTCB0xBoRzi4KdwKIqReFWE54AAAACsBADfR5hdEFj9YryR5kEM6cJgiPLhxOV5V+o9MJ+E4ddrcwgyFqYI8tbhAAAAAIQEAEJx5hdEFj1O1ylNgDAvhiiVqBPlCJrVNLH58+7Je+AAAABcBABNEeYXRBY9x2Ui4HsVcXmmLVMBHwAAAAB8BnmNqQWP/K0Gr+4XydyBfnJ21W9C+4nIoDutkwFMxAAAAOQEAqp5jakFj/1geia8aFFvDCWmr90VWptdQ7OVDQSyWwuXWhyR18hCDJ1K9/Qq2HtdIDoue3NGdMQAAAEoBAFUnmNqQWP9czLtx7mIBtEQL+VwepDKXGOaWidw90oX50ExW0giNCFYVgJpoSz2uKYP33qbJhI/woHzdsHJ6TZDnipPeOvbDywAAAGkBAH+nmNqQWP9fE1P7Pug34Srh0udRP+98wHUJaK8FkAiUxbgOt8wDzRa1I6uxErW78jq8r7jPY4NWGmag1TNTpywrmNUURMkSu/vF5NKQwSTwnn25N7zrz6sKy+3sPc7bbEbJhNxtGYsAAABGAQAtMeY2pBY/YVWhqvW8GlMLjRCKz+e7n6pgkadxHDu74g9lAiBGMJYcen2PYJXY5sc4iVMS1H1DH6B7DedSC7PO9+jvgQAAAC8BADfR5jakFj9YU3nDRptktvEoLYPYcaQH89puPvaHy+nHe5tMiwjdHGnqUh7UIQAAADQBABCceY2pBY9YLxIVCwC7pnvpbgE2pdg9JP0uPOmobiTsibGseVZC7DjCkq8yc0J0ikDBAAAAIgEAE0R5jakFj3MdcXI475TMDGmbRlBjWNwtqQD+g4sfwU8AAAHPQZpoSahBaJlMCFH/DGdlaAAAAwAACPT+I3oH3C75IYXf89tkHsa9686N/WdkuZaevIPuobx547elO3uEbDxdsxNNqtWh/JYe4heOPg4fQ7qYbVMs6jXdAGVLIXz1CKIc9deWNZJhCTO7yFJFWu+4+zjf5QVP6wuiEEtfVEFBaiJW9PnO1YyaAuOPdKRXCgVhYfTy8l3+LWq6czDYs/HmCL9NLAF/FuWblnCauZRInqImsKfGH6SmKpTWzGihJDpQP5fHmhCdZiKQdLDI/t/gyPGxbRSFSLJ5aOXHcaOKADLiW+ZwJY6tUSLEbTt+jfElRMduuLdHk49PXITqwnquo11xwDGmzF5RM5IIuonQzIteD2By/yIbdIVTL3YDEBmvR0HLDxOcW5tpIE+zEU2JgUMIfRHSXywq5DXae9mYvFIy3C6ig6atYVC+3zzKw2iSxOzZPLJz1j8b1X2ub5WZbiMMa0CpPgoXbPl+ODUyXpIriE+wDFhyO22KUGogqZtuHD6CYGIz9TTAZofuDT1BlC8FMFBwy29OfP2HVTSl9T6BRH8C0w9qWKhNEqwG0tC9QL7QfsEpuO3oZytogowpX8DFTXB0HdgsrC8i/W0awQAAAaVBAKqaaEmoQWiZTAhZ/wv+6L5qmyvIygVmKncDWnHQp+ybPbDggFoyW1B/jXwc50ZePlccSeTUpICH10e06JUq1mNYvZeQoAAADDIx9uHPMB0pcRTIW7XsKVGypuv1lUvngh6L44zgYf9vzsgzXYmgRnvj63hj/BzgaFbvAC/IYSXA3BdQtX+/cmFgQAAAAwBxWfrifwal2Sr76yI6cyTEWvSdqmGkfWEzZQw18MaUye8AIsBFxVKfnXNYR3MpLbZjEjfA4NURi8njdDRtMN0FyI6Gr+slgoU/J/6tlW+jaIrUTG9BmuMgbGpsZTGBn4votHqwvFgIjH5NWOP3btRWnLXewVEtkoQKNh5KrdrVthr7bqC3PSaj0k/0QwjzF+MyNXEaV1ZKD75pHQ6GBLK+dM4nKmcjj1DrieyClsVs+QKhiNijS/8K3SLwY7ZpPhPVM7q9cWFz/EuCeN1lXIgKVgEtUsk0pWNrElGlM3CEtsA1C+P4x/OUcl3qff+IRBfAY42ykDOyV+zXXfpGyDpsgvG2dyX2UOcLN1yntVcwbIo/7I8hAAABbkEAVSaaEmoQWiZTAhp/El6XQywZf0mINUdASL6DlkY4Gc8+GF7gqVOmjBGAAACSpWCUpsvdSif+dGqH6oLdA9TF9MPng7/2h9/VV64w6Mj5lE34ArM+Tqsy291hKJi+UMmiwQLvzDcn8PaZfV9LdQaG5+GbwOo9wz9l6pUo8tE4nQbr98BiWDYLlYiDXttF4MYEuAgDfbn7OMa+wX6iPBwt//U0EIU1a3BTh1X7njH5deNE0I0+8JNDQT3vmS+/uySBUrBE+iHK9cWV73ddgrsoj27qzbByck/srsUCJsBStWzmnp+Ur26SOs6a1fYZkvr2QxOgR+ViiC6pH2cLmjkSqRDG/A6ulIREZ8t8SkzYjHEVoRaZdGGqCPV4dX7+WEiNJpACeG40QSBf6vceYwWspnhBjORktnQRXK51BQhSHvIRHcGoKJaDG0W/zNaBVob2wPX4oO9qVaTg9zkRB/B/bh49830cDJ+a3Ef/eQAAApRBAH+mmhJqEFomUwIafxJelzfPXFVKdv/iQOKdV56ZeVpu3T6BoEw66RSC8XqNFM10tZw0qOtltwAGetN1jYQa812D3sBuuV2K7UggS7cdak2kIiVBgH/7PrmNzwVdc7a7PkMA3hHq3GFKP9hOtGLg80t7KdildJQ/6lUABk9OIGCsd8PEOcqeWW/QvljCiz3ABI456z/4OlhCykcKQQvOS5XKKyWgez9GwXjn2FZNz9Y6UzVFJe6mE4qXSvnz7UfgcTB7yNg/NM2QbOcZrqoiDZz+CHJZO40dB88XNViY0rUSueQyqaLF6zaRl8r8BhHa3ogIS8eIYTMTEBs74oCYQ+HLhQH39yJfUx6uyJKCdD2eIkSEATJIuapN9QmmG46nSeKOzZXQmBLEamoD5qQ+B4UTF+5nKIkjBu69doW9WItVtSFAhc38HiRz6UATnjk3IkE9gc9Eyuh6hTfemDYKUdGSwY93/XaQo3zqALr8UjVzfBr85JpYKq2U50hpK1LGgVvcO9C/ecfXyfgQZeXTgjr+gggTL5w5vT1Ta8zpF6WVCk2Q3+HZgBjAlovc4N6C4idKvrJ0CsTrWRa9yFaBjfVUCB4wUSr+H4F3dBFnN3+phKMdrDAM5PHQJ8wWO/NbynHjo+M03tGWnVGwyevFpFI/Mls7di7DHiZqhVwRw124vG1GA2gCKaBaf7fq3sV+k3HKgfY89Ln35VhPVUBqz9CtkCO7vGe/j8Q87tNK2Cb4VYgacFQK9nLbcObqYdX5gHII+TXnoQ0dXRU/aqVVU+uGEe2jVXcpXHXeIb2egO772TJ8Jjm0rC2tqoAF6KlOxleTgImzTEgIS4F9raj8tuYhdoRAhIwzFL/iZy1pT0X4j/EAAADaQQAtMaaEmoQWiZTAhp+YOKySqh8xdQZpGhAJq0wRCSqGQ7tHHh977VqDq8iJU6d54Y8AXv9VkkgTlKa5E5YmOy+YSh/aZBGAZD3bpG2LTtpkux68mLvDDq2Iy0BpUye9MErx6+RP8/RZPpEyOhAIjHTcdSuDC1sh1dquolhXrygjv6CrN72LwPzKwFQflKpJ6cpklGIF8EXa83YBoXH9L6HbtcKmzY9w9cH0YdK7LgiuFQ+LpKo8BhCKvuyYz2vs7jXfbjuc5ac7W5S/thjAkmF2IyzuzpWfp3MAAACwQQA30aaEmoQWiZTAhp8ZfLvFcEAAA+GA4iwDyU1dcGOsAGIuBHQ9JgAAl9J4k/uaJ85mFsVLXRoB4TfdQ4aFnFBZZuHfMr7Az3WC/9RfLbbyAoRp2rUhBLEcd5YuVMHUizftJ+RI76WBwIuTf4BfXrGLWDHTJGyrzAv+WVro+oO9X6fmVloBJ7tbMVFyRg8fx6NjLzNpLRsa+HXLVZI72Eeg1VsQuGdBBg3d4IMQf4EAAAD9QQAQnGmhJqEFomUwIUf/DuuYE3AAAEr88vum5KxHx1tCAneFzv2AV+C5AKy74FEc0niWT5YP75m7pEoXjVDn9lovyKFX7NNuoXJbklxW5vbsACNoSkWgkAmqDRGMa5V5A+r9VDIyFbEwbJsslAWUjfFfJzELNAt9DGM34bRODpZYOjnw0iB4XYTtOYyPrU6Ooq7P594wM934BIC2BIraKPsQ1rZpYejDtNRhhEEKzw+HGbfhvSU4mrShILjCPEjv+pf7gJjCcrzoyXWoKrod5OMOy+aD806jU5nMDjStToTPtGWRTVsoC9cwVmjzGFObltE5X9ndbFa4IsObwQAAAPVBABNEaaEmoQWiZTAhR/8scdw25GlAvjLcAAADAAAEjWs734ZfPG2rV8QBl5UJO0jmut2dhsvbVvUdg6mk9xQBvgvmChSR0q/UU7syVZSr/dn6B0aTYgJY551TL/tCzS6zIgdVqyLbadAlffJUEoyR8Y+7ce2kqaagrIQjaI9PiPU4fwQl2HJG1mgVuobujgBmqZZ4oOiyhprI1XZhuFwPj6wjIbx0iabhWmQ5FarCLieZo3nkDZXmok0aseqS7pItyPT9uocpuudByDNsznOeVmnxYU3XXTm7eL/bUzj1k20krgzc74BcFNOqHr7yR+17Gc34gQAAAIhBnoZFESwSPydxGwffGuVwCrmgrvq9TCB+XPkWTP5+6LN28+HoG1Kp02VI5kl0HIxmm+Nv88LvuWlNqgZnCmq/N6JzT7aRsoiD++tlOiaeicc3E3aRpcCwIn/ibt+/Ppq8HDC043B4NVhknAcJtNApm3I6CPVO5YSM9k/lHErcwmk0FtX1ITdBAAAAdkEAqp6GRREsEj9SNn3AlsFD/QpnA+SZobVIin8Ebr147Pn1FfhTZKL1YlJtmh+Qp8y15J7mnH+Hm4x8yIPgfM16B0INTzkenhHVa96R5O6N/uD92Zx6aiTKlu60YyYCYqrIH4n4LB2BQl6CahlhU9E5hH14DqMAAACzQQBVJ6GRREsEj1X0R6g71ISJNF75wWIBou6f7YoyMn45O7sGvTKBq0iyOhJheL/71QwJqDkdI75BdnmDf8k7VIdniLqGwuh4CODaDeG1CVoRVpSQB2K3TAOIr97PJh3foXSM0Qa6O5arc5/mjPVf1tmsPB7EcAkQRE1R8ZWe7ITro1EJYId0wKfukQztHNApKpp22238zBM0QOImDL/xITWWzmPo+T739iqN0uKThk2VnMEAAAD6QQB/p6GRREsEj1kGCJwQKwrdHIcA0hUWy3Eo6tPxmDhltq/gcCUGYwNP0bW7RhZiHL660R7Eq0Efzw7SH+W+IxkMk8CN298sHavKT1/NsOdxzyszdGXLEZc/bX7RPreoMGwZ1962yAZWG8y00TXnYFThG9UZuU1YMMyksqIBNzjXYvxyk8CiQTdkMUkupXv2J1vS9k7lqX1Q1XIfWMT9D4aLOxmhIs56pNTDozM56QJ2AweaajJVSgG/QxWE3Zr0lbD0gQ7hMotz9lzcaz6VB0SYLyPfYrVZHIb6R1HpJ/4LIeQwPgaQEWsvJU8TA2HBYKGb/aGBETkNUQAAAHhBAC0x6GRREsEj/1jqVacfomMMlX+0e17LyB07YUdr0P3UAYDvHRU4LKHr5qlbFjlZpG4nr3WxdqYZmcrZ34jTDBeWG6aL59xjdpcAMiPWQdtVog9dOcrOYhkbYW00X3c7hxaLCDwe5vgHhwx5qPJbzcYHVa1K4oEAAABWQQA30ehkURLBI/+pU0osU5s8PuhsXgv8k7UlMTGlD9onjt3FKStFaooxa/C0xMCt1e76//VnODqO4Qdgy8e9h0PfZn4F2oImCFhCfHYgQkfeS0ZPJsEAAABjQQAQnHoZFESwSP9RXgS4VgeavpNurmHY0G5PGCU7bwxQrt7lgvFU4G1muheHIyMGOdbq1AuoD/24tXkHDEx3MQQxb5alplcpNXAYjq0xHv6OSkl58TmcCVdQL3M1xZVg7xixAAAATUEAE0R6GRREsEj/alEe6SQfIIEcN+HiwzDttbUWbGlAtiRunvRJRHqlNxtNVLU8On/aoXrIEPxHKuExDNT/xdIfpRFkx2tge4iXv31BAAAAOQGepXRBU/8p0H/hSrxb/805G+Xw3ejYJgWwuckwkkznFTEPbLnBMypHXFW6yNqd+IiOjJUJ5xBkgQAAAFIBAKqepXRBU/9WPkuz7Gpz2yQ2UWL/WlvLVax8s3PbYBnFtCCna5isBmT0N4/UtnTikioDWxujyI4J9PWG3b4dgoGclEoRYGPmtU8ijHYxC7IxAAAAXgEAVSepXRBU/1q4H2yIW6bXQ+WecFDxK7EmeqfQr2Jh88bxDA2kMmDNXAppEDfbbmQgHTM3K75HrbnWshHBAHyf10OaxEYAVzNLUI7dCrMfnYzIS53x2jXtGC6mlYEAAABzAQB/p6ldEFT/XPgfbHdScSZnvpPKLfm+ZCFIzsNB65Wg4ubONlpqWo0/e3ZjsTkCsz5NkBDWGftRhe9qD/tJyvyDLTCl9xHIU+VJ5dkg7FbR0GdUGCcBJKCglGtSuFE98SsQXjJ3RRonKc+SNHUTSVhSYQAAAEsBAC0x6ldEFT9fU79AS7jFAV4q+DSkkf7h36vTyrwIKncZYfKD+MXg0kkkgwEagS1i7B4a2JrMGMHRJ/kQrXaRZaOFNTQX5dRjr2EAAAAqAQA30epXRBU/Vigcom0uSP/g7F0O0FWM81Sbp4XjBxoizQgpfAJzJt+BAAAAQAEAEJx6ldEFT1YorV0749CgaNZkfVqEpFARy/7PwvJrZliBvknuZtc99qZm6HoseycfSVNyEjfmHURZLNfbZiEAAAAtAQATRHqV0QVPb4l8Rr4qJR2+DVEgSJpI6D21qOCdVFLdQall4WO1MErrvWchAAAAUwGep2pBM/8pWC+1aWhiz2JmHpwqQXtLsKOm5qxnziFHuKL68SiX6Kce0pRtuSKmbo0kj/IcUQ/L/4JfRsvp0nMIG3rlWM07D9ae9ySbCqgBMkJwAAAAQQEAqp6nakEz/1Kii0mkpxBHk7ChRWNr7Tjh3L0MZ6xrVRVI3kaA1GDBIRXQbZGTbN+sA+M4R8H0w1XNeWCOPSjgAAAAVQEAVSep2pBM/1cVvugUFUrcXCIClNAJwRIgLmW2K96eGxJKNdlJjmkTMz8n/Roju2NQcwRpiHiBQxVC6/P3AP+2TZCNN8aocfwBhtRnbZgKAB+5KKQAAACqAQB/p6nakEz/WVrltJCtQWsl2EkrEoFj/+Dm1aDYuggcCzH+bEmEOy1wltOf54bKCapRQGy6tmtSn0cwvrzL7EUhB2mAi9E9U1z9WcJoQIrsCzuXAQE0u405tefNjoVzLVhRxaeiRoGi+vv38ep0mvPN9TkB+ES1theT3ZsQjJdlaj9QInUyddcG03C2ejORVgL868psLcr0z1j3m+iE1oMDHlsZ1Gq4ne8AAABXAQAtMep2pBM/VVx6XyUzm6K+Dy4m9oyXKq2Z0g/4bqFrT8D3mi4jxjONK4qbikKrxEuHXxFUf3/5U536HsTyfSDp7p3gWJ8OzlJtXOVb75tevjYB+K9AAAAAMgEAN9HqdqQTP1KkWI2BjrRolAeGmKFTx0yVQcg9jaUJ8tVP0TK0gW6k3kkCNREzKj5pAAAAUAEAEJx6nakEz1KXTKYiT6E2F1w6soe5aDWgeMJ/jJo0eX4nGSJFX4yfXM6W2qSMycfH5Z5QwsI4MY0khRhoMdvpCaworK2lXWFEzt51Sf1gAAAAOwEAE0R6nakEzylq9lbeBHg1yNd5+xY39FWRQk2P7IuuxLR3DgdLio3yHiDeVirRJBKGZcUOvAgOLfiAAAADC0GarEmoQWyZTAjn/wGxyMEk3aMIdfhi6gHfjQi9mxGCHwl5wUCQ7d6va9ugCzAt522fy7aOKCJKtKAho0xRjhW99oLh/KPJr8ajbio5QF7qo3xpE59ktsgZM2+h69lTo8aftX7O18HD0ET4yQnU44iqrmBaRvCW0A4xUyRs3tPX+NV4ZdrMjxKJJzQmQp+4wYs+EGfG0r042w4cBzx4oIhzWjIDkWxNju1N61T4d8oL0pVKsPIThtkYZsIVk2+eJ6+x9gyirjGjEQuVr7moA3oKjzWD+B3ZDONs1MhUXi9UhX5lc5q5CqVlPpGotCmwd+mo/K68WJGPg1+RjGYHEfvei5LkqGY5g+uf/74NxgvFBS5Mz3yctXQv9Nypy22QgboTRXRnKpospGk2c9I5Gzf7TYC0NbBPijpZGlwziLdyUibvh930fWjjU4cQYPbEvgqO2jXg5y/8u2cxJonTbkzhjzt6cRMjYANiSubHulGSClbv/MbK+Tpcw8emfYGocLmFkdnHU3Fn4tOFtVv2Hhp9xXrprQZVLtf3bujo8fYPzDPWWUSgT2bJFB6xHzxAb/evAh3Wt1DQghqrUqnNOm9U19WdJu2Xg3NZBSDg6Uvhg/MVnKtAqWEu7+Y0IU1pNd1cPiXrjbXXhRr9DCYUvLetvUeKg1vXVifmZdf0+dOLJe8qjYyhFevliIN5V/BzDNEZ3jMTOkvrfZXTjIjFVym7JiFRn7aiSh41A7l5JFzese6M1/bhmlbGM0wXGdXbAMGWRRTi0xPcKHpSoUGUTJ3wlccHcs9WnQVebUpppfjL+HByYvQBw+l7wD/qBoEOIKARPuVRcpbahpmBO99Yfe4Aom2H4AjEr+e6tTFGEPw3al2Wv/9kqg0BVUdvQZ8z+EmY94RF8dhCIsCfmTL7PVTGgOa3lEGzKERTL6VYKXLwsy9SRqg6RaNfInIS768XXhQJWTiuavhi9BQe63dVmsdXkbZKP3bx48V47SSKoB3a/nR8LOgakiJPhiFolnuHZDP+mfiR9vOiPRNgAAAChUEAqpqsSahBbJlMCOf/pjRBqEAAG5eLMUIU0pIhfihH+E2c41gPpctyYd9EsRFNkq9jYXy7EgRcizQjR5jSK9SY857xYEZlVo8m1GH4X6ugxGU9atPjWol7Ch1gzNGypmNsr0k70AIQYewjOKjq7ABDzQca12WqXyYtiuzC6GgVuBkcQ9TOQCJOFlHWIy1DCp0Ok3WZ9Y7MB1eRz0IxhCh0IRcby/mDAJqgjMg8zRZ3M5wXDWUNMBZPZFAAmiTMH2MGHvT4BrOEEGgjdEW4ynXwcSs+o5kQGyK3SfwnMjlTjksPMGqSiT708aOvLoNxu8Nu7juRuKrA1TooWIFp43jtUrHY5X0R+YnLEhui8AhbhD6SzfItBZqwGUzQQkNI+7yXKele5jXVN2wMMotI5HJS/OUDYMsTQ3GQ5SKWdJS5iU//kqMZnHMVBjz3HglOVqPzV3Lyox2D84ctC/GKxJlSm0AQu15UxyNK7l3bA/Ekn+H6BtDB1ZzaHW5bgY/mGcI3S9HXHnd2yxkzbVPf5Vwil5v/vUx7sGuQGIaPnr/m2ugTFoCRo5ptDX/PnAuCB9u0D40iGO02wN1LTMhQ0lJVVOxZy/oK+DgqjaipQKiKqr5aKLFCP7zB5UH961m7LGg1vMJeDIiJ12EApxw2U68gW+z5vB1T9+Cpobxfk4wMm/Jsw1I/xScTYaz669B0p7Pmlmht7S41AdleZMoGPCEVwkrTgnaA/HbFJQI+O7pV/cAKIL8Kq41Lm/uvXwH6TEgUgXPD+2bfRMif5i7r8CrPq0Mbd7ETdhPFNB/P3fxKlkYpFolneycvXftJrXOyfX20nv7FGLDneZJ9Rx+peq8acAtjwAAAAiFBAFUmqxJqEFsmUwISf5cokR32jm+zUG4r96v/54L9OvO+lgTQEUxL56Vmr0VkXxggaN5uShy9N9Nh2BfJt9hSgzBj1WoEAJCDkJ/VF/Vwsxz9IVRytGlmGG77q+mPvHSMik5Lf2/qayMDFyfBRgf49hLXV23mKWOgg2Mp5wVf1EmlONxI/v0KuqkKQ2+EnnEQmqRFp1IYr6I8ZrZ07W1uelKywRF+TfoS3pVr4k7CDsvyU75oj6aQKQN4E0OJPMLklkKP68A6PtgwXWzMX7ayqOSZMp8s18BXirrQ52msouXGXRdWHIQPQYLo7+Xfb+oMsFe648TSdKYXooc9AKLRmG7LpNl2wM06iYAtXGvNf48RfRdd1ugVHO6vYXGwYAGn6oPtRQJxPsooonzlf/vk0gPe1apJMhW0KCEU5+PpeB91h9RPuGWoKSsqgcg2rxy7oQ8u/ybHwtHRJA9Zju86UodmeWgizSmULt5rAT9DDyacYsNeRLdeXjXoq5+LjfsRJTiws+54vCY2l8fUwL4gFITXRVKJzgFBnZJexyzV3l9+CGV7APEhfoYsyE1MC6986WrqfICNIQIvL6pzwJQM2ulBVdGKHlAv5OPK+zj/AxZlPIoWxC3L802yOm2EYqBAexkzqT1mvp/wmS6IjHDv/FB5MuMrEWphAyYiYxzth0Msf7rWqwyeYd5IlI6D5kowbA0yXpWBmyyqzZ77bPN1gAAABDNBAH+mqxJqEFsmUwISf5fvCRXYWk6EoABjXCn6PIzofs+3lDy8kLLwLqN+m5QOj1tGlQr5Q63Iby3ATwGtJ2RVmL+g0tuTgOgy1vtK7CJT4CCALu6aK+c9e4yUvJH7TIzIsEAH12RD5fLkR9Zq8M1CtZn0OOpHmm/ttMmAxGeKbt9xFj5xk9/vaW6lhH+3+cIbfqGFQyGSMVXQxaVLVUqx1KVYi2uQY/IjLa6dwv2siyHqsLxaCEmGybidCbPd//Hpn674X9L2Lrm2ZvsYRXpqfu8yiiC8kn6rjOhL1hY6MYCoeQr/WMVqUG75K3c1tOEW0RqBOwvY9HGsehO0l4Z406vXmn2xKutanQWjKKT4473zs1g8RJdEiZn7eR4f6DPG8ys+KrsSU4mWehsOXs7mZUGNAT2/tG1aa+UrqgKIiw4/9El9SzZeCSoLPToQt6jbGv/8sGamfP16QESwnI+avMWcCq0gz5L3YII0XUxlsWF/Kc5kYKJ0Ak9pfJyynHvzcTgeihZMTXn5MqPsuncTA7JiCC5XJIi1pp67zO+FjrWfWp8eKCBzSazhKG5+iTIB0eVk8O28yTvVzbFidK4yOU1Tz/rs7SAnaX5OCGHgzq2ojOHZjqzjs7lix7u97HRwpzbBQ4plMfaiFIaMSPYWVL6i/0qg0TimGkM6NP+83h0QHCnyS7PISCiUdR5hNIgGtIvdjRK0yNvXd+CYKeEezn2kqOy6leLviRdSNUWWHuoZ3tOWr48B9Vrpps4ljB9iOL5MatYVKjE+vRAN/5QI0Y39uIgQianExLmsgbxut5PzxqgRC3ndDOwgL+ecJH1EpmETFvwD+Q3QrDfPYw1fewyuwjyIZVtQdTSJFiuq+kdvatL1XeShYCvtITxBUT/oFMvTFVBrAp7RGrGkhy8vGuHmaWnUeBLDOOXr3s8Kwg2QFFHVUfUHR+CDnKum3x2WBOSBeXiWWRxG0fdglM5rZmGd9CmhtY8qImRkbWta94bySAuyONvUmNkmwBMfcV/Eam6b9HR1XPxwubwLIscZldP9JxpHfD4ujw1AHmZEZ+63EwGmOXQsvlLH39Rt6pNI17EB3ZBSTYqkzJ4CZkeUhNhhR8e5h5S1Xupqf/8GBHmhZwAySECaZwooLzNiZCxJDp5A91rVvqV8nBGfi7lKlCbj6Fyb6Xm9DiV6N7Kd0XPO08LFDoSDrfYAcUOjvQnq7uF99EMXWg3F4q43WJqhy8HEDWPha/daZHBx08zZF7KKrukGEI1ACFW6uBlhXu5MTOg4xF/TOt67k/Az2yQFzOPeyZJ5D6b/8zF+W+5xCLyjTsW+oxgtBroH5qxSYmdAo+1iq3L98xz8GiYl2ePSLyzSEjrvgywXDa6Mi7NQH8w9ly/b14rZYjJeDDQHFLEhQWlpT2xQVAZ4RN2QbwEMVDl7AAACKEEALTGqxJqEFsmUwISfBuaf6Z5vS5H8ADny8aQvF4wsxoJstd1mJ8AiVs2W3/VLBH4lXJW29hMfKav4pMZiSDQFmI89tYndk02hl8FzzmhpAfoF/AflVGaCW4YpoDatb+SlWiINw0qOvymCqrMZ9zGCQFJ8b5u25ZOsY/KtwGGfYHw5aeORpu8gQPP5oPb501Os4x/yv12dEYFMTsGgWDUZorCHI3KCaEOUvRfukxnI01z1jcYG9p3lhKIPlsvxPtOn679emizuU8FwOR0TOFYXAMMtHqd3spmSGiuJs9vx4f3wpe17imG1+B6NjYWKUq3HiRGLkUsiB/ZD2Vlb8LsKOnmhA+Sm5wOhYQ4xo918Ytnx82xt7UAfg+a8XFB5jJ2ZjPULeQw1wf4g0s4O1lEz7pYvzKhID+iqZFXZ9vf2IAjIZnLV485z/Rl/fdlYMpWu4HNqQrd6E3ifZAYZ/QZxsUrxdmTtWwlHsD4MdxR6uTp2fl/D6O4StuYpLP37rI4X82gON8XQIBNQPRVtJb7W38aspveNiHqJ5IjU07W14ykYO6iZGjPLPSgzZI6lNUnKhh4LGP66eRAWh9kxPAhPV+4M5PBc2cFoHUucaEhuQ9EPJ0GQ7BUl41YhzFdgOFVfyG7xXRqOmLEF6ZyuQlPRaNrLy8S4iInTAeocC7OKn9SRO3kKfGZcc2HHy4UwZVgykAI+1MKi2wR6OOFRdbe3GnwczlUtogAAAdxBADfRqsSahBbJlMCEnzG0oTJQASI7qDJ2y17pGh+kDvhEql4zSL2AFWYEbQUbgHSwzh0fESvgyzh37PnfeRl8kF06ln1rF1g/ABx7G0eK0gHNzahqIE1FYpUEcn2Gc+lOdGfPV1nTdqqruI2Y5alFJ+cXZ4sF/NMrzVPHxFs7UodVFKiVEzGAkNDNbHAPq8FGcZPovgxRe+pCDvoP29MqULdAklvwx7bb0RS0z6DsY6bdwqtdLrl38u3nZzN+OPoUX1lUzofBK9/86luStztvL5KmLrsd+thUXSTTQyQCRcUbMsHDHjmrXeIlo1ecvA6sTo73gMdYGyd/RKhlj9nAWmzzz9no1Ke6Lj31OrVskUzbsIdpcsieAR0sLLoQYhBWQoKWip8wcpHC4uBzE0cqtgswopVlbi5KgbTuu3NXdtdpC1dl744WjCXwnEKAkkZ9jrWrWszAcqEJ6IVNnmlg3OB7AfLuB7l13SSsh66rdiTQHKn2/y+7pCHaRu69hnkw7ZNfX4+guPXWm0h2EwZbyKZF118Uxbpy8syqk9K/TjWo7H/fcUozQdpo941GwEVLc861mKnlyIccIiCruNYXHd9ypYz6RiVATQ80RBj3T5fDq/mBpJ3qaQhO8AAAAZFBABCcarEmoQWyZTAjn0ayDUWpgpUWMJIA7i1oYAAPqKAJpgMq21+5GI8JC0qBIZw1Rih2neYfV8pqAlZFkQ5TzRp8vt4jsx108NJGy2+OusLOa/H6OejaUiAZdyIL5QY42a3RS8uoQ3B8AlRH7yryw6ubYzfAP8632qPTNLvpcLLfraugZFaSvAvXk7mkXGhzEf++VCmk9zTomx9Kdk8S6EgizBtPViqWn4n5RvFD+1IHuipb8993fQzoCv6mZwDan50uUpzbH31ihARfK95OtYxrUDS1WLm0jXcKOQw36QdsQAvCpKSIOJ9gX6I9T6fdwUq+DaYBQM0veZBbuvC00XIupI0SJSvW/G8nJldXb/kygn9QL/GbQ6y4lbHPOagN4jF4Zd31yXz9sidqGzBNi0lvAny8hI3YVZK7tHUbk139mt2hKMRkExvBW3n5BMUQMKBkIdWld3K8hsEOM1jILq3Vm6xtuNWEyFH4SLswFjo1pYkSima74EUBDzzURu2riwUELtu6oQmVHknFCN2HkAAAASJBABNEarEmoQWyZTAjnzCvsriKSAAABlWbvYUCNFwWql7hRzMYNomsY8UxvnisfKLUxWaIt/q/V+T91Kg5HwZCAFlsLEuPdRqkDSouaj2Sar4GQFJkPNCzI/smEtZEjwcKapFNLopEbL5ECM85X22eOYUBy3UyUjXh2f88Xvw+y8ilQdsDOYn5AhVkqoTJV2vtqy8OabuZ4VrUkv0fJRbmO1AxbkPtCb6uI5r85rVN1hm15D4wjspnp3LHsp/Mo9zAwXjbuUZb6ejBAlqm37JaCUIA+yd1IcrdxImZJ1Xo/bFFdiAyfLVwmzLzqCXYTcYCPv/rTA/HbHmOlagg44EufO+2+x2rUpXbvXW+ou/1yJe+bFru9kLjLqzw6A4630u2wAAAATZBnspFFSw4/yQ6KQJCIJQp4bR6H3en/gXFZuhriuMvpbSyBHPGwTIWq4qzaAj/MF4cd0Hs49ckLO2hy5NDk+vfAszn6NEtuAHRnpPAIyXJqckSuTvAepZD6w9738mtXTUBkaY7G+j+OTm3nb6D1rdmJqZf3MFDO1To2gqYa7FyJDlrxG/pooUFJKqwya0T2AxT6fJNvu3ckmWqJ9+9WV7mmM1h+ztb6aFgObyUPFotk0DcImhIGEfbN6c+AfcTSccm5cimCHf2i42Mxf+zlFtUDIW79QJ+87M3aIhkK+6LB9+/HxZTVS2yXhayyXYgMx9ZY9jjHOk21iqauhYjDYp51kp/FSpnKWeVga4K7o4bvQptIkpq1YD6PbwYauEAWRKg0IUH2DzMpzfHX4qWv7ght/1KyFohAAABDkEAqp7KRRUsOP/nnZ9Vj9VptidfXLXpN49dMeUUFOl++hV0gwnLdygV2GHqvFiZDkNuijE2Y2YVvRmD5kbS/4noW2ZwfvmDxjwepdGKkWA88OEGthWjJ3XwHn0nrAxgRRZWwO1jNE+vXRhpi73MPhTlURNyRtl/G7qmSyPEy1RyiWX/NF9GehOSdRYFyVVBlfqf0hyjFmjY+mitrLWm0W6jA6J7UfItFuIAkgS+ra90t+eFS9Hep+3yAS9RweeJ1dj0MO4IVRqaFNpV+aFLlcHUWPwsMs/CJE0TMkMWoWsHmfIA6KaQoKDGJKv5tLcX7qu/rj3EpvrcitUAOJfSLodXzSfxM2ft/FQWkZuXQQAAAOlBAFUnspFFSw4/TGmM3R17V7o1/2eJbdPsUV12EL0mHXn6/KBr8ISg6T2pZcPbgMjypS1820XCPCB6Zes1/n9jAyqR2S44t/N+zMsUBaieppPqJJvs/b4el/TWY2dMAnW0c+wpaAuDLFbMVMr3se/gY9bUCCrI/Qk2YLT+in09hUZz8f/5B5sw4KzLfiyy1RYbm26om63EVzvbemIDZWoQTyqBE2ijW7aorDkhKNAMyX0qY5lp3Vl+UBxPQ/BURtbl7/F2hZUqoAboQJhJjQDzVhwxQMlV8jKhOnI8tNbhT2RGvtswB/Z0gQAAAf1BAH+nspFFSw4/bJYLoAOMNjaZtqOZ2FZdmC/71nDlB8ujjdexeAQZcz1LwIYH3sZeG8ahnzVEOeVzeBJ820LqhniwRf1SnQ/2D7RYitP+xeV7OLc4dagwK8IqWOtzYut7KNnPonnOcMWcWjLND4A46C8n9FNuJSyOfUJvGOkTIivGbf4VH8ZU5J97YnnD7hdriUR4ZP98bQ7mTCEvWqUlCZEHy4wzvoBEjhi4o5KDUwumC3n4F/7wKcB6btlWbSsfy7MMNMBot8Eu92dhx/1COowcaFK6beVavQthH+T07UYzS9vlJZj6xNxpLejrNHMNbrgf5/KFydVybF54WXYN76sUDwcVtKpy6aT5BFQ/WuwP/S2w2QKw9HyirWStjP8dw3DRinMJTHg96rJ5KkqkHITNLCqfhxUbh3y0gDw6ovysClvRmJKY5adc8BMqyVNTW44RiBrlWMZ2eQnjBXWjfLwhFZfn7Rol88QII8+QkjLm7NldZ4OkNoaCpwFsWspgEyK/EFl1+uaCwieEYQogXqEU4P/36BJ0anhZ32cao0PgRI2y5FludpK+kK8RKEHbuhYA9ZULwQfZpaQ6xkZyhlc79zhWuT84bgiyKS1zuYF5/yjJZkn3W46n8Yu8xjNhbbtCnK1B6icFY8bf5/pHp0JfxnQ4lpe2JzQhqwAAAStBAC0x7KRRUsOP4XWG1gosfQsG0YcsS9+BU7SAPGTHlbXiBtifRgzPpaCH6osuUrIXZbdj2cOhd2GAdNxDE2LzpJe4J7aqznJmn9uPBldkjR2AW5midDOr8qOcE3jLPFaY/XN1nQeEUI/2J4QZEmWEwrWFf6KlCU7XlReECYp7DrQx/UKNYg0FGLpBB/zPwlSWwUcJL6+a6QvzvNKQYZmEy9XiThxROP7KdkTCz+H++saUaof5CvnCiB43c0bFJXhLzebDpByuejhWLaR/HJ3ZlEuCU8CbwKbqihK2LsEGeM8WhLhmsc3bzxBxSBGZXrPqYw0nIQ/V+mkBKQn2RNwIvcGvFK4ablVBPmEDkMif/oMAwv33TEIvBVpeV8bX20Ke4Jv1snqCy8XjwQAAAPlBADfR7KRRUsOPpgnLY74hNiq1B8OD48yrMddrafIN6ge6nHRelzoyqJe5yuS8mgHrKqeG7+Zurh8qcOTzRCbcKII8WzdVYgHWCAdgybFLtMsGpdWvpkuP0jA9LkXTwy8UO3wqN1LMWgYcbe8eV0m9hKmh+LmvasAJmSwg09LkHew9XIJz4SkgoJeXQ9bK6ddi4lPWTbWzjkZ9r8XZWy+1JZuhK+A4jcx+DXzv/vx9d01uHFt0iyIUjXzwt4XF0ykDoHgS2zkI3oQ9fkrp0l0R/nVE9jqfSz4dwdkNQyytKarqjirLKzFLomkIMj94INSYhMPF3PZsnHUAAADAQQAQnHspFFSw4/9qFkQKaLgYgd/i5i+KnCzGFihlIQqP+JKtiTJxplZVOy7w3uQJMcJArBHS6SnObP3LAKnRuntxwtMazYx6B+0HH0zJj96bw/3DjwdRSAjPEdApgXI5WxhrMgF92Two0e0+howF0nDNvONAK4a4clvcIAf9pCyTiZ6AwOiEXFka+Na+p/H4HnuoMXh+MBXsFFRFLtY0HELh4yBtc6lDuMt4hJ3hpPw6erT7xrxSni+zqSGe/PLZAAAAkUEAE0R7KRRUsOP/sYz5yeNYrKr/MEj8/72PhNbM2XppO+ELgRcYgsdfDQBfl5DhLnI95wAwTNqKiPCEFDmPEV1EuNxSGMSB9RVWwQSlhM0mItOJOSYJfqiPCPKqJmnxCMAEehL49xqV1HSH0wF9xlTzmO6HxvfenqY2cwummH30MblMM0P7mZaZi+Nor4jVEeEAAABxAZ7pdEET/yZiSTYN5jKe9ce9IRzL03h1NYh3PdChS7LqlHnFCj5rNirndfdp1JKnylCB1ZiW5LjrR0yEin0kPNlqJtyUb+cc+fR8DH/mEGuh8Oz+MjEh8/0t+AgLkp1QeccLI0mfzmYnGZ9lNxlhV9AAAACHAQCqnul0QRP/T0GqeNkV4IyqzF0San4YkEqmQSkQBaNMkkZUm7cDCl8KqoCO+o3r2cZjESdBV+b13R8ZaxBsp+xB/ploclzwdrFkuRwEFe42DXldreB0vxq76IiFeLEmwW8ItMIb3Ib0OVqNF8YT1UWsjP83GR/9X33OeMVlUMPrEARv0fYeAAAAcgEAVSe6XRBE/1OVGAbafMIbQjEFVMpdnL0rIjCotfzPGbFk89x/WClKVLXidUcbMm9unmizpgPhwHQKKcbl6uSDX//DQ8SaILEl4nO6T2UEDgSLMalETf182j9pSfeLESL17LGAkJRABHaflhHG7qKCYAAAANgBAH+nul0QRP9T4q0vfg+X+ABc1EhxW/FkkgCyNJtqrWqQ1NM20qbbqlptA9QfTyJKizllR+YUE9SKouBkwmrz7RnRjux3pjRG2QQPmh3VoomVBBJ/qx7HI05NdeT9WZG3/T9Y9GgvEwHAQJLBSuP5q/gtJzPmxzIgKvG/OSjEfu04o79LCrJUfRBzkXLb8vUiQSbX9q6dvWl3c3o9xFtgWe78f3p/9PtcghEE5THXFTc7B0jmBQbCxXIyDOJT1F8eKMQ003bddsi1mUa2Aoco9z9G+OPfVZAAAAC5AQAtMe6XRBE/UbPnSIw0q3x0lIZV19QjcZafb/PwHoazLSMsiEoO7mozliul1yVVyZgTQm0CKxAvOCSGPPrzFEblVFswJceSzEy0NxlxhfyvXV0Dy4SWld7oLVagCpyUTnRvswota2A2ZsLoPNsTTDSiozwafzvavkUZzEn+pdzii1X21FC/2QctWXrsgOoACyimxhnyztlQKylnSXc50O/JWQ2xxvbOpuDjs5a0H0V5P3xWJybdF8AAAACNAQA30e6XRBE/pROhhZ5zuKIyzc6d9iyz7PF7B9kNdKyZwpUlVHTDtigAoUcdPzAEVzdVX24FDAjg2LOFEakMLwl90O1pt4naHwf4e/m8tjj27iSnX36Tpo+dd9IWstllhBhFjgUQApacfUsSd+4uJLTJkKNXSFex4JWilaRhHm6NM8XREr7VbWu8/yWAAAAASwEAEJx7pdEET08+NuP1d+Qt5PpheAiEIvBQ+hzWqYoF4oY1vLhKps8cJo7VR3caOr2VYl7Wf7VvPXJNIeeTNS8MK+4SlpRh+jrKXgAAAFEBABNEe6XRBE+6kVAWFoVbKOHP0yY7/38vdsxDiI7KOkuhq6EFd4sG0JxA1A/TFPxBU3eK6La3W4aSR1w/QeE5FlfW0wObwdRHrDzH1eiwvPAAAADcAZ7rakPPJNgbV9lPyiI3lCfgQ7dU1lpLAZ+L6jgqo7UXbNmcOnK7OxYPvr0tA5nSMRwMaTGzwd18JUOC15jc0rAROs1UxxI48fkpJf7ZaFqYm29sjcSaHSiY5qHYDqwSarBaGCmpkw4rdf7ZE/NNW4hVW998vSKhEvcwtpDfwFzT/mHzkTv1dbKxzCPr/efEC9eE+nyjXaKc+lCb6RojHbQe3sAC88HhH2Q3E63sch/8VREK3cIRHJcp+IdYjCd6gffii3xKABPF9TPmli2k7PMrGcY4z1SKWZhCAgAAAIkBAKqe62pDz0tPHH7Hz79V6cbYJPXYuU+EMt1shFYCoZwI+apvelc90P7kGgagDpo0tOkD/StjhO1oRId+pLpoRcJP9c/nLx9KGJtTC6zXdgolsr6CnGN+IcCgw6l/6yAyhQ+POXZQUQBu7MDnEJE2zm6A/16zFUfatxwiYnlsylfjAEnFJ57lgAAAAJ4BAFUnutqQ8/9OgGz66Pzj05uLmZit5XdkqcBrTQtEc4u7aTqdSKWvOtwCu/Ed4gNklMwLEBTuw4GcD6BR3LZNwwucz9iyrqiHCsVvIIiTuvRWsugjlosUBZvL7Ey19xhB+YKu8PCdTz23Q5rZxGBytu4/xbUBIiTBEnTWGX4DJkdkTsAIdVhcTdxSakUJgiFW4Y7yexF1oq0FFbG3ngAAAXMBAH+nutqQ8/9PnYbE22VmMhhVZpdHzQjWdv7/t/ruJCg5jvRaPJWgH5+w4kTlakn3VA2OTuIWfbJI8PTGM/rd+hAWqo/4gyZDtSUE7ajcp6qlulZke7bi8AAUQNi7E67SJbD0CjWcr8R7aM2TRVz0tPH6rR2X8wsrXtUjM99otpoWBdBbu47bLKjxrmeBCxmzYZbcqk4bORT3lOl045iLQF/kX48UUEz2tELS736HXSQHbJ6AVdRACDCFqKIuizGarzrBuZyXdBDKXnxoPSa9sQLDIC03FlLaqEzDGCHxRYYaHNB9/s6OiKlHUR0CIolYZYWq71jK2lTcVOWwOgoZ0tpcnvOKSDP9QJA3gVBaRLMrUSqhTEv0TsGtLHZHJ75ct3+JzApuZZ1o4aC4wZ6PXak8x7x9dW7VUFsw8s6PuaA1RrqlZYCM9vEm5Se35edKpnC1Kj01Z+ZsnGNu+AZDVACfuF7B2muZBJFg04/swaRwoAAAASUBAC0x7rakPP9NskessPrQRIFYZLDat/7mlmu2RhY9GOGTnEK4JYzas0mJvSES8LSE7RByWAHLV2KgssFMbvK0Af5WfiimaHARPPKOBLQqN2qQZrYtaUoO4Jao896nxE9Rxq9mnMFPRXyv/jxlcdKsNIBZLY6y6xGHwcSSlt7YOZwQomYg7QG9p/akVLUMGeQEbWeug4LUcX4MrCDiX8lHDE2lOTnDtg9NKcjMpqP0f7rrcq//SzHLrot8aCrLyWdw8scAwlnJapRpd3OB3osFWYRGfcdtWvIKOxAK0sxNGdnJiC/qglR4musYh0Bja3icRqmW1E972hVbyTsv7q132K1iC7YyY0UjX7h0PlTSIgEOqPmGRBJjSWIT3ftXAFZStqL6cAAAAOwBADfR7rakPP9NkP/tqJePdUtE4BJwRMNKQZq86M9JevbaNO6fJeWK7IASkz9Obt0jtp0YwuPTLzynVYzj8Qa9JjlXm00ORNdrvT5x5+hUb0FMIeaSM2GtFIeBR/o44ahJzL3hZXU42a8Z0YLOQhHx6xuXxOeWw+YrJ4wf4adFqDoH5aze5k7NurtwaE6nsQI8PzO4MpJKPYSTRHTTAooMHv/W9Cadv3jZ1aSPeBipv50EYs4FuxqL/tIAHCFr48z+Lpl3X3dqiktOwVnG4bs5EzmgrJPH2T8HsyijNBtYnCLacuHhJm22EC+34AAAAH4BABCce62pDz9NPfmsGedfSrA08y2hoeFTy2A7eoXu4dxn8RfK5PIQ8jFO1heue96mSgt4Ei/dAZpB2GKUuv9DdjG+/5IdWiepKYb9qJQeJtQUlXxe7kOvMWM5PAntnk4GscQZwGqBYd/Kq4NehTXvRO3BExNyJnjUgMmFduYAAABqAQATRHutqQ8/L2HwbkUwAct6EnLOsQHnbZRnAZ1X5f6K3eKObSMoSCFnatVbOGxPbNKDyYRPoIqFebR6zN8fc9yjhIzqT3C33Ut8gdH1q5HCHZiKtv1JoOuIGXlCYkt3hphw4UYHuTXgKAAABIxBmvBJqEFsmUwIx/8BYgmLDB0o3lMGXrdoj/AL+cmbmiLbT0knlCl6C6WFNZEpXnc69haMqHtr/DNEacP/ttwUeANx8hvzxFdRmI71lgGY3KUtGstYylLnT4qkt7T1+VnD/Mx0Hx/+B/Z+wYJBNpYGj2U6a8ZGMN5GCnx9N4o9jcBrbRjLOysmyH55XKMp4fpsJUdJVjSKvBdcWKYRVqgUNlvRD+ynkvrCgxawMAZ2I4bQhxk+Ix6MpG/1YzPSHsdew5jVcgBPOjn8bniN4l9bTL+DXdF0magq715PqGUwpjejv9L2iqMR6BiHdyHrm3a7riB09mCfeBV1sAc8lynDN5IjOhRgeqLhsuUOnutypGAy2seCDZ0b+WyOnFNHaZsvBT2fGfZNX/eRx8z/g1S0HLfT8/bkmR9bvfKTaQiLbmiCDloR6v0QHsqbSY9w7ypJSSvqRLU9d6KViYJ/LxjMPk+qVcjO/iXoV6LPrn0fFblQGvJzVW+lYfEbrt/dNS2V+w0sZPC0MYmX5wY1XLKZHEpk5LSjwrdu0vvi9a5jkhMStF8s5NfqToXG8DgwRFqzHpAxiC+OwUN7tYL5o8K1dhTvLKBGjy/Q06vL747CkPmYnoruVUEPUVnuHLaRxoLvit8y5VicMY5wYGe4mnJ0xtE0z8Nso+PDInkzdZ7lkOndzHJMfd9V7jOAPUMHWqa8xig5NOacBmZaW+sjNVJVt2AY9dwtgDXuP77sbXTXQa6ZLUCPLOjsG3TwLjpDtd5KmzcVIMLLABAlaetJ3OIkNO2SGSH0ujwvcPmW/hcPvpApisGVLZFkeCHn41RbldvPzyJ/wYC7cMtlWBBUf6Lb20srCmkvFzfnXK78fvDnmRr34CmNMhOcqyPCU5h84hrjYiMAbFdWH7DbCAnXY4lBc1b8HmEKUjaAieByHOhM/JPOaOrD9w8wDcgq2T7Bym7E5qEyVUD8VR6CgGM+hKW5afr4QhtjyeY5TzUWHY4inQZnE/Z/uJV/WERWKOrKLzy9Gk3qINJP7XCdUzD2blrpbiXkrS54efsDbrWsMTl43xU3LizsjIR4/5out6EUoc5lBdpyl2bo9dso1zTprgefil5D3Aio03Y2dCRgtIDdTUczdn27vy+cmRlnWlx3o0FEO30XTmqArHlKudRIJ82wR2I/FmAJ13nqp4hG9xQcaCQDLx2Bpr6SotMl7hNFE3yX/r6YaPWSM72aLoQGNAOrthu3xrkRbeZ5WO2voyCjySH/L9tD4bl6vIKGnL+5n656WPFK3z+rQcm204o9zd/L7c1T/5FlmD3x9T/Ef9KldB4wDTCXXTFv8SB0inbpVITk40GN0CwjnOCK16mY3LhGdkim+Q5zUbbXEJnFpp2BJ8h4rUgDipb2mPiRi/zxjFzHUaqPcSM+pth3yFd3F+zY/Km8wdQZ2uVzNXSaokHvaSF8+lLafwJfUFLeNEV8xX/+2mwV9pIC+w68FXFwkdd6qAXBvnEDHxACK8wT0eX7uxHILNxYV0MPL3ECLsPJ6ZvlWQ5YPAMTTUuQj2cAAAORQQCqmvBJqEFsmUwIx/8C6avJsF9xqRkh//15id4fF4hHBmZ8rMeKC3OTRnJTLsNQxMf7qy4uFzW6g1zyEGo22dopWK/tMMwknC7jdbx+EQAAJPPjj1rwFgBD2aDhKtRJtcrAzl6INMjVNSbRuLV8GB29Czwl+aLShzwqeXJfMWwfwAmNeLBcV+7bMGodA9NxjO66pBapxVMdMUHdj6dZVwtI0+mnHC6w2HMkWrXpXPM6mCc18b40qToTGpCAANG80Hx997MQt1dOUwa8fPCk/z0y1NIMXE6m0tSnDOoJrqT7vxW+gRQAWITPftXVnjUmMiUik28SQmchYnyLc9lCxC7eemyRQfQtOkPkHReoAS6VuZY+D8BfoK7nxd+XOO2OvH13MI9GZMV3efD2QNIedCkul8XqNcNHt+eFi3/6L6jXnSpFcV1LMpyy7UgwxjZ5fXmZKhpXuWuaJZDSirbzhaftH4PkcjinYZNzjKDnB9iwUrmxQ98yTgDG0deY8i5ucCcGQ6KDX3lNV+V9stPHW4f7YSG88v/VQ4cbwzQmG3IQzzfIWEcHxmc4viqH80npYOkvd1HDrj94KMnoWHJbhqUyu59jQ46aS5l8D72z93uXcsQtRO25vCECz3QpUPQBhQf46lJSUu5iXtkTtNRxVhHNrtItBRhugxqMqoOw5SRxVu4YzlndTVVFhwjuECk+U6W3ugb9IqQjN2bae2RwEAwubvuRcipn2Nz7xRoLrOMXvRZbtKfteVNxaukbNOlOISWxlGFNN5RTSbro771MdlQpxShEtYRSlqIIdLUvc4Z8dJu2ebMBM9786kdD3Cjzz/tcbUYL60SZ9arQRmlZmM0Cqo07yZ0EIik3MWRiFiZWT4Wvt3Bi1qtxuuEUvbysgHyqm1At0m8hFoQCXcNk68jmrFWSx/tlEyBeCSCQHvj7xmDtScK0LR7vx9lfFJWtPcByqhYlveq+WsXqBZCdePnuWB+MgLO1Dq1YpU6WtLipQE7ArviV/wb92mTdd9G/grVHXsdkx0xX5SqEEC9P2Hmbx+NmAgDzxpQmEL3oIt6QBAd9MoM9LkMwvETCnOZyb0xg4gFhkcGzmlcmZgJbJNeb++sfvyBptZDrl9pwT65PXFKppcAXRKWNC4Srg3rsg1UE2opAVRBkMs9JtREVVZeeWuzm8wbZYKbUyi3qrIrdl8BG61FWgcsJcGSj4ZzDWQAAA1VBAFUmvBJqEFsmUwI5/wlQQtJQ3WWiEstGqAuhEzh10RCuO21RZQ5LCdOfhclyk3XLFZkO4+kY2qjc5SRg6uerEmjVIjf2uVWXJMgZXDh//wyz3Is6y43xhiQ64kzVUkZMfCeL9qW1ppJK0+rVGXsQ5uEPjNtFUBK9CnaCKH4N6jfbh97o9vm3FvWsKv/OGFBaKOU5GsSRQp4QpGg2dTFDhsW1jyRH/2gbQzQZ1PIU2tFFwYXlbU2fhhOa5alck6uxAa9jpNu4V11SgVz7BMxsTJ1zggKI9QJw1x/kbn7krCwJGPOW7Da1D5SKW77GNJ4PG8ws8IPRuXmwNikQTagjfQFOLgS2quE3MfRtAd6VrzJb4TFyUFWXJglob4CMQo2EIc1rBmO6eZjj0ZNRDKmwv4NniIJABk8WdyhEb+ufvHmgBUvQcphteLl1855fUBa2Z3OetVW+O9ef4pbguk7kDPZ/kisKCVNQXWoFpRJO7h0mAYxwKi0AfygWdaBmdBCUFpkV3WhXaaHP3DvV7FNHmJBaeoUeWhnNhSS56ZjTfMENF4qfl4k7mtRN+mwczsBkl5M4DxhVG+rQN0lZ9D4brkxzdP6PNDBuGrzpPDF8FtKq/fmRrCuUVbpVYQUJPImRkiHf70Wr/uuFj3zuMhccMMOm9Lw4IOe9zy2RwCMbs6SPyL4x38itjMfwwqARIYf0l9XcwvxUg6xOFg1jgUN4qkOBbFNk84RIjKp7jtyCemtYi/XWBvj1i3CK3wKy5AQMeL1ZkvlOGy//aK2kfc2GjRhcurqLbcoLRoRxzwtWJJrO6CMjPvNNJCOgprxzU5JgmTRNjpWat343FpWqg35tqC49A0MOnTuWRR3E38J2dEAvJOszEHqxeZbUiRyg9d8S/XPZbeKJYfnyPlbm+iSr/B4hXXsl98SJUpgCIgEbCxGiSaIjpoYI3wCGF8iFtsunpSaw1ov1f2qOs4avwhjMYCN4pKvauSOnN7bABCoJ7H4pnectzdprdf3gi8ukEoNrnmZ9v+RvY4PA4hj0SmwKf7KQZWGKP1XKtjMouE5Jzk+CovCvYpgeiqiWXPOraE4ZtdER+WBTLMWq0oLY8BrKhYJSvRHcM5s+TZ8x67FukRErkuJ9AAAGIkEAf6a8EmoQWyZTAjn/CgVRacgEGPX1rrzvD3cyAG7auiaoy3E1ncerxe0rzeS6y2aI2q2d0ScdVX3jHeaSrYhGE6A1JjxboSgpPiJQguvlulyKwoX9HcQUSMtfbCT6gd3Vjf3Yg//gws+y7OcJYvxoVrLg2a/VVIXhzYpM5BJFNFcAS6vQHK1wRYfGOaPhuftkH2X9NuwXgUGaazxeKlsF+DnBew1S8koAb7FZWvF5qUPl6iM1gXuqWv6TCbaZlgZNizgcFkE++HyNkH1MmEVAvaaJqbrx3/LyFUifsV9uR/CslzmQYJqsz63n0HWfVdAHNuE8za6pY4GRszFhEVrmnxxCj8mldiw2785DaQdSNv8iUNZcyy60T4KkGsfXgZKbpLcbF9pNnnpN1mq/GPZIrUM7WjNPYGmYYGsp+n3flwOvu/VOaMgHQR2T6OZ5z8QDGbG/lpD/SOJSfO2KqpIykzBTbePM4eoOREOPZz/dD5it426T+R00QFJcl5WMZ1ZbefEKPfkD+GgKedlUUSebMKjsdRyBeMFhBUzvCZEVOVRCxkur1tAWs8FKSC0F8xjMqTjXslG8eEQD78pl8XOaqFiMhF/brmMQI6ZfcZujC8K9lxm2ARQT7c3xhU+7yQc63z4ySgWRkvrL6PqdumzIZL+svRjQyI7wd16K9FwoV9oiJc+HbDQmcEhJ5qoteO/ONrB7PIct/sn2cWnvomPw9JUaRTDfq5gNVJh9SOZ8sCNXyiU79YBN9ejlOLeRW3COvLWFOq+kc/0pWkeoznRFChggFVKqAl5zhm7qyafbH7j//THTkd6yjRBR4Br58Mw0XkijkzF9msLh2pW99rJ90IhkG1CfuX8+wZkDZS/URDaPifpJl5jogs5agTn6jhECbqqYMrytl6IWsraS3D6WluriCLWqdFcTEZQpNKtwupWVCHd9KMatRCrNqgnTnqiTjbUDP2vCAJS281lqEPKd6fSMlMidLIdLbh5MYqAhCRfjXhm4UbwRjVbXnIuP8SzD5KAUqg2YQIY/V1P70FQBtyiFsilOMDDLSklNOTzu0ajQRdJQnubwfRIq8shDnFmd4q4d3WKnhWfmAJSyCaCmqJaYC/YQOovts8Z0h9riA6SxKOU4gZ4zt//uxwNlNz1AbvKHl+gukAVdDjeE4oKwqK5svz02W2M2hhwnaw30Nk1fozAp6nrr8ZIv8E0YOrV5fLOfcHbiyGVxEtwlhhzXEwaJPOANBgdE8V81uKJSe/ZHR6PtiHkdCM176b+BMjTWcoMSPJ/vsBJBK4P9UDR7UuYX4eIbKJ9uNVmkgyqNTXbeILBd3pUYeZoyuZgdHza04CN5X+B+ncBIliuvI44aod/wAqglOY83hfbp9CJFN9gviBkxTcSdBHFrR2SgHOpqwyVLNTJxtr9uKR0YoWuKVM23p7NzI3v1C7Hlf0piDih7anaI0NdLDJfczdmkY9PtXGzUBi+XqjNvb8MuWRYbOxrhgwBNQG2BoMb4VOKwLnwHQBhmjoFRjisfNnDV7K256UsIFDiQZsm8voXga6G3HlQwuHgp+/0i1u2gZ/cXB1Hdn/yYhKqzudIYhTRZBPCyZGTAiuTiOGX4ztjxTaBGRwNkTdt42SpvURo8U5v8uBPguNlAgEhm1dxgn8FqU2u+LI/uyGIhXmFIzl0bcLDDJeIw9hGOFTgDImOZe8Xnwuo8M2ohowNtSrJIi4cm5pYquyQxb4JRMzgiErRsq9lAQ6qXP+FbSoJFQJfvoj0TtZG6GAbhgq6bjW53uMyKnB1YW5x1rH7ETSotBJiYye5nUgd+gVt44ohwhk5lMb1awT8TrKDb4iSaexOEPjqsRIll1SZqMdeb+RhiBZk1fFgigYQOYoI7n5LC6zSFOezSkPNNT0PPv10IRhAewBr3vFddlZ3yyy9GThGR33ySQdL30YbawcNDv3No4XYH8WNbpVAVTdmQK2OLlBSZ0UwdPZTMDthSxi0BHWwpuGOOucJbOapzxWir2J6XNGAcC36+jZKKi1Xbcqda2KiC5ZS1PbdLWZMKtdEN4HAeB1ck63q5ECCGpCs+b48AxMvQcQs0sFkAAAImQQAtMa8EmoQWyZTAjn8DoGCQAR0cBBlAeFK9D6/+oOq74zNG1DdV6fZpyNNw7WVroLr8kCoIfClLm4/fVCaoWJ7V5F6SuD2gj2wQj/aIE7Gwju1Sg3LA6V4CZrQr66xB9kDAoQMHxno0+9xQMrLZ2Se5izAoYWIvxBLsrCPC5w9pah1hOwmgx0TPQD3GcULWGxUZ6pZqyjVB3cKPvo+5YHtN+PVY2AMbCIyT/COwBvFewoDUFg6MT0uBBzP0yyUxR68ibc1JMqsY5xy0iQf7S3/XLTq8SoWmI04pzFWPpcMTViBFFMwltagNSLvNHzYy7s6SKiS+AySeP9vrB8L1jWuFaWAwwivN8gXOJsIKKBxhHnJm9QDi4tHoPJZ/t0zv5EMXuU+/78OAyjr3qkBFhqPikvDqdGIrpGdKvhVvmlOK224Uh4K8RwUvRZqhsFC3VSG3we7VLO1zlb6dq+dmE9NvfQjAET8jk1dizyyvontU1KOhN8u8EPswHaJA8tyDHBt90LI69exHjSrz5SrXCSj757qTGZy4ouyYgQHmVcUvDZPr0Y49E/iETJUog7o+WuvajU3g+IcmBPbFK4OtuOU69OlttN/5CGuptQsGMDrJQq+oZHkM+hIPPfDm6q77nmssxEyB8KBTxx/DrcUVOqWptCkCLg3F7W94n6SadMOopYqJgAI67Rsj5gW/VhHJxwW3pWCruQ/Ivnb/FVqhGhNdN9S/pQAAAlZBADfRrwSahBbJlMCOfwlErg5crnkgADTG6z3xzx1GX64xzxZvGw/8HSH+RT1KH7Vc2xQNl0OVOiiT3wOLh4oyzKdq2p8g2oDWc3Mb99chs4mCXp/OdHrMG2i9/fhtYqv39a1V0kjl+HOqgAEHLfR7w6upCX9VhLFBxnkAxTTBmExac13PO2pq91IiTs8jX6CPHOiqNe0ZNexU07Zi0HzRts7hnp0Q4LetHhzQjKi/o77ZhWC8+olB6rmzfX4JgcTFOIyXm5JsICWysK9RJ5ahreaSZ8dxoo6yGdykrx/WhyB/osdTMvFB45cVee2dfDgeyl2loqmxSJ2VLcmIKplbB5XmivnRgWWeUmYQn14atIQifs8hIYJ22GCFlqJUXy0Lc8Gq3cuw9wEIjWR98+B96Jc51KuK4yNtJHgou4ZvcMWcE9xunb37JEoOJXHeKGYUcW5PxLoEBKEpPbZWqu2u2Z6Zhb1b2BhoAbR8e2PQ526RdUotaGIJ9ruMf7YTI5U3T7+rlDtaymQFt26XehwfroHvRo7daHp6MGX1qDANqgcMRzobOKPOa6hfBr/UZz1iOrqhW55K+WYRFj+FSfa7YZX+JtngV9FH+an69EabaSQSBURBzSIQPAvE96k4FM930UGjsyRDdZeshrkOvMeDLB4WsbnYmqUMeIbrWRczMb99FwjmMmKQtpaHdNms0dEpT6fdnWIWqILXx8Gv3r4oRfsxe7w+rUZZ3V099dbT63vI6GnSx8PrIQbC71XZY/ojabYT42Pm5NoGb7AlDMb21ig03CthAAACjEEAEJxrwSahBbJlMCMfN5zbnuMwBmIqMKRRg33HEXo7QgjHoJlm+zb+fLzRYRlhZtmdCISkgSrbxTvIRbe29I+CeFCHEZIqjRGKNbALvRaCqMXYAABnSdxnhyuTcOYkLN1h/4EXtO0SJgO11x/3RCW/FT9pJX/Xi4uT2f9itVXFujADQ71ynYiWAVQhXeCBVEORUF0bKW4k3ta5hdhtxWbhsPBw/f//iC9ScWbnzHGMn2UNP3D5tccSgpb0Wf8B40ST3Esi8dS+zCLqF+TTqQv1UtLjUsRzCrjw1v2UvMUtrr5C8sQyPFA4LEpi0RfG75yDGt4Gwzw74n7DWUg0le5+hxwbNJl+zYBTkrpNM3LiE2WuXr3aGZ3G6lDPX+8Hn9fQe9oWO5DV1tz9S6qZbGYXwSTlQ7Kt5deCeKYsKjqMsu6OARihs8HQSaMrkxlFUaWsM6hnhn/PslMiMAx66ZEYuzEaCe/G15jdAuyjUgQXI5LWMepucKKhjsASy15GGNOvO9aDPC2tKpxg6L+Ps8pVo2outMSUt2RpBJFpJomf2U771wPLlNVHMJ1K9XPfCyTAjirBuX24QLlzJajgN1rIPszlmv6k7kVwj3NYgpUBVMjcHDqhGfsMsWdpoJjLxGkPMOmGEr8Azl8ORPrOFosH7rHB/OKQh/n1LAvU0MWVEYxbwRs8wD5uZs3AE0nbZkuW0X64EEvsLyeJ4Xk2Xq2LuqcaZ6lNDanC4AC/1rCAPRcE5tJDezVtBitEeVUtOYBnOUHEIv9djVSxF7VTFKF9VRBvkbF5f+3MhM8k/4a4mL9UiOvgbqUt+prPGXgHmRvpY75xGKIhA9spFt9BW4jSqTphO+zgSQjW1BkAAAFHQQATRGvBJqEFsmUwIx83ni/P5zZ7IS+Ad2hhu0JgAAADABQLsnv4Hn+LadI/R4ZyKq4N9EPz5TDbnPFJN1pXkkt9oqbOkGSznExGpybyRdgVZqzUsB2FM59eiFmecvHWE+2MUnzOq/pFm6DzP8/HGyfuRTn2lPNsJoPZTiWOF2ODyjO1HmZ8JaEvCYrFK2pHqtgStBDZAkT0x0nlkSFgMo2U7fORYCnjlJbIOk6KJIrRIgGmOxgbyQWZYNRN4EoIye5w5BR0NaKu4BQd7ITJkQ5JREi5CZ6boezVnXd32BWbh60lcmB2/wzUcEIG6ZP4qSmbBOTz5RsEGIEe0Zw2LHUqIKD45Kz0XKRfhYeLJuPRnPT2YhvdoH4lmR7IX/f83wrDWykLesTrk+X8v6RQNLuYTMO7iczRV/82plxpirccpr5MqULBAAAB4EGfDkUVLCz/HnlV0fkssEsaZkH8WhVIhAgOi3Rl/SRGcNE8+vYIdXWUEn6t0CbrUs/3HlxR5XuCR4L/R846GH9P/1lSG6P3bfGfBfCOUZhOujAFQVmnKSo5OuKCtVti0qAqw+cmVpAt02gVtRzbukOVvcqftqRqkc4wGZJI93icQ/GgB/JIQK6sNdsN9EA0uO31eEEfJSsdVyWC3k9aP/+saI+vocfJ5/hcHZm/zZZiJ2TPw8BQem8vmpB2/G43LvevOtBI5PD7S3fHHUmyFDmcfelB4aXNLZHCbZyfb8jn1r1umtmqwWb5zjGs/7kwsdLr5f+IQL+xCYQF7COiZAiahgD+nXNngkkK2Bb6iiFl0wUA7+VDbgy32HuUmWFRQDhMLr3ecD6z4lypGbdl8yv7KnBpslRwETvd3dFhSvSA2A65cato1B9IGJ5Wm5xKKlG4EhWjV3CDW2jtPjm/eDQnOYpT1t5KHh7EnQ2HYvh5wwT8EzmKhfyV6RXUTE+J69HmUna3ERHsKf6v1+/QETomlHvftn/RaPQZV0HpuhV7oBXjeAiGgKnGSVYTFBeYhCxMwLDaCfMCnH3MNnposEAIpaBpXRvrUbLeGjXUzImxduewksKeUieeodR/py1wbwAAAW5BAKqfDkUVLCz/PZa6CF8UlsQieeCcD6tK9YG3CuifgQ31bmJSDrecG7Wa+rKo/QBIq77aDC6eeDHz2ItznpnzIxc9H+cowp7HIEMWdyZcnsACvD4pjuEWHcr8gLeKLFfM7v6QR+E/aoXX1WtWnNnuKI8k75ScdHI+BBoGK52b36f78T9eI17sHiXlVjD2oLhDIQuFdSYgjO7Dv770QNEU6Jm4egpIAzl4B6FHOOL9nV2ekAsUOjjlbsUYlmMFiqJT5ww9ojqJGDsxNL9f5IY2ptsChKIMc5fAnkwNdlpz3NRhHNSEhU044b1bw6VbjondNe5Y2uDNFsnuFk0ehN5VYZgU7cfipjoKb89jwvboMhRCtrSNwUvb5UER5HQbUQyosJxafmBGuUvwScediS1GGOSZR4nmYxSC7yPHKA2ThZUmHjBumvOHckSdT9RG4XSgwmAkKuOkAm1L8bWJJnm6fLXkt0lVbx1RIgW3+xkAAAHWQQBVJ8ORRUsLP2CxwSOAiGESXxgEd06AFeXma15HLAkEoTALl/sdO90RJ5AeW7ovCCt0jsL2J54dElvhFnCqfF3ECeBNpjhScQJrNTGgIQYsb4h+MXX3JGnIyuHmigPDWa7Ute5yUxk/jPvsuYG/HP66IQPemIhKt5Cyx+1tspOFtW0FMYLKis4Ure+y2bFC1iG3ykxCToEQJQaLzNyb7HELlIsWPucxpBsEV5FvRuv7kS+oH54CUsnoZWEnRUs+YJgogpdRhfgmoAEwu4s7JNdpY+p85d6iT+5IhIb/RsGpav5LP15oB0Jz1wag7+tSHTRdAP9O+R8i6ecYCxdqaPaYGVuO0mjut0gkFPQVRbiL+5JrPBiEcpMgWM7ijBFHzj4L+WWxNxlURRtpa9J5tnJDfdrP+27BKlvhifayi9m1/TuPFF2xPH+PYrLiBk7PqKO7cv870Ifn6O2cbkseSxuA7o/kkT05SnNmbRVjTibR+taeTXl2fqfKZA5uZvde7eIg/wh7LiR8Qd6qhZAe5mW8vg39z0ImZb1am5nPCWMVOPCE0B3DUln2ic09DvNr7oAWO562aPIjqbpWGEKYkOx3q3XgL0Bx2Qg5ZTC+skpzmU93MC8AAATvQQB/p8ORRUsLP2XGmAFXkEM7PAbT5eJ/nZnkDy2rWkSDaE4J1/pXpwk8c7jz0IKwzaqi11zVMfRhlk9LSCaAho/0XAbWms1HWBS0qFauvWtwlGliDKoVNY66P1P1SuVtDsZvYZLI1L9TyyFPg/u1qG7sNa3rGS4qD6HATHG7p24w8QcmFtdxJxJ4eMv5m4jKNN4MM8mRDWmenQ5dsULEMvtHtc8UUypNmgUyeoGDvlyYp7XqvBmm7tBv1NtOvofT2olTJnzt6QE7JbjjlcToI26EW3/sI37wzSyTlvbfrsqcNL2Vz7uzWv1FDl2KcfZzX/7hE32zvwIDInx/Hga3+GwIvv8UR0dBVyaaEGx+po+UgGCUQNj/BBtUfmDQ12vpppiILvN+JkcIzy1eGPj3trNvXoZdJGnLtyqlsOGpV9+6kfdUs4yGfw94GCY/xnY2Cd575an3FpekYVy0geoPakUh1h/32bZ74WMRIG278h4XwZZezVtMnzgLzx8LWg0dv9Q2tiZHqiM+aluLSmBfLCmWeoH5V/Nj2oBtSBcyOm78MQ0QgzkvRVbMuiONFoseXj/jSxg8Pn/yOeGKTSi9DdoVzl/HDq8GHUmSb/9ULQa/pE/usZE0xHTvPCUEfaNNrG1+Z/Y6TFt4iYgadkcG173/v3xlSmBpS7o7iYEDeiROz4YFn8f/ZJ6XgDQBU/x6oVyYERm8cKfdpJMF8hbvTYtLSlZ2ypr85De09dQhQDzaMlOIf47G8flezeNPxWF2esyMb+jJ9d3fe6qRFhRgHCf14xb0B87QDAYmTlM8l9g/uzBe869d40H6pg13nlyUyS2B9yyiIH7f8jDo7+JJhKWmDjQw342w5eAAsg66FHTNlGjXgs/g6BiYM/xI3GNPMdTu+tGk8hIi3N7g/rpLTibwZ7zvFoWszAG0Hwpz7bRWfX/zOozPBi8wNgJWDsYBqR5FiRVfzpKc/wFcmn877PkZ/Y4a41Oxiu4ieA0G8dzemlvD2NBUGls6OLfum/xVz+62+kIy7nRFFD8JKLcPZWT5B+dBlYIrFHvogqhbYbozrUvkP5VC8mlsO+8quwtERN8wtdVr44YppqiJYU4DfhQShkQaY9Dv98wHLtZa/5qVcrfFwu6qvVLEke3+47pemvQ6GumsXdzx+6myiagEIfErJ+HOznb+Ov5Zj02EiOM384QLHQXSnac0WurOOG7fktCuEsEMjkUg6Ch+jBuYvCqi0GcFbPwuLBxhFS6my7TuItNjQY+WxU8jVKFqm6aJtxILHbE0VlDHhnfYrX/QqjJBtRSy9Iqd7LAQTWntvbQ2erAwH7137Cb9xJSFOQte728iQLzYjBS0TWINGtI6YnsOnY4fH6eivv5IU1RTQpeCCAr3g2tWuSLpulXQNwlpV3sNWKvioW71ZZX+2x3l99+kdNOOBobBFFUtVPN4+omem4bZJYPuEoT5gIesNhA4M5ebjx6acidKhSFpk8fA4FHMCGMZbsYLMEZrkq4CQ9/qloRZnsKqrkPGS/MDyf19lCoS/N20BKdVbOlhS2SyyhmYUJdDHMLzGosePIrr9exS9Jp0yzZAjNF4mTwU/p2qwg1aDtXoOoyaadNV8Ox6P/XEmXAAVe3mPW8w2VDh+q8grurCPwoIFrhagIhPVY4Z1CwTwFKNbh+jPofpu8BBAAABtEEALTHw5FFSws/bAXsvo1IeExC0UHMsoh4wXWxRD0Hct4qGfRBwnvLn9TJy6ejN8US2TWAwsd6T33LYIbfz3GX3W9auXDgKOvKWxooS1nNjb96QHs9n6Pp8eZddk8MHcLWpgzt0m1wzUVFu+3oCt38nSz0tOMzbza8He+ftxrfsRKLEJUisgadTN9P/RCambC5I7c5xAiSjgPeBiqQLgN0L708UYyRBKE/E1rOqe2hHNCmyFZmBh0b3b+wBdVQkMXVs0pacQk6zkTQsWH8voYGamfsNvwC2iYMcgwMl7EaS9eCcooAQY6suzwCIB2IFRccdfSc6KzRVdwm9KcommDrD6/iis5IVkTCLfSKBCOmzKZ0fkm6DEudSTiZQcqtSgIA5MBb4MYDFRvn2F83wAshLCDTqKtwuXZ206GY9osmSVro2vRfgo6nvqkOMDNbd2WVTEtxrgvEEmmCfPxPZ6TjOoWhwDFHE1CMiNAf6m3BxJ1Xrj+ndWRPiqzdXU0QyvMXfkd1Ln3UhGPnFj7Pzc0nSlkPVQfEG8167Skws7LYq1NV1nPWWUT9z5vfRd40NIiLE7IEAAAFkQQA30fDkUVLCz4wQuYb5+FHs4YaUJdecZUR104D8JkZ1lMWg9kHKnitcLJ5cRGIV8CSTyi2d2vYaRp37lgw7Uxw0lm5QxERaov3iYSdfZIoFfgGPLVKVwgE/2y8CZqb5G4axeM31nHSG6OzXfL3eDPclwgukz/s/p14B5X5xkWo5/KzqRpma2JC2PbOdPaWhhqe7jU9SH2+TeGweBqlbVrkA91YZVikP8jepvTYCPiiMCRtzd6NTe9j7gjGDxXCtkJvLRyCWze+ImLW+td64evTTVTwC7kvMHPKtO+5W+kDxAhPcSF5OC8qZa11PNhMRe4hGJVOIpUOLunLg+dockESAVDgogdhHKhu66M3RqykBTTwH/MTXbcdey7+caViBPY/Wrf+YK0Q1qKm2wXJ8/Y67QJEwIxLAdZjjmv0SPsLr309BqL9/hPgbbSjCV8lGujvOAr612+o+iLDi/0c4f7rRLhEAAAEdQQAQnHw5FFSwo/89vw4QeO/ExO/9uMNF7uWLBfbM79hrb6G24AnXVYX2HesDuYR6UTy9TBTEuz/n3WhHCp4DtgyLxAD/68M0H62ktYU63qj45cxGza5sAZPc4xf8Z0hEBtRwMKBYNPQtha06L3hkPl/+L1AeGUFfkQYVXtTQfiVrdLd7Ev3/YGJgXj1RXuobz0pt/1wzzxL6vzNQsE/hmhMCCKh6lcKtEHSxfBHFGTxfeXtuInJTNLtPxCMlPyScJ+tBjvlB7IptAB6phdHh3KImqD9HYHG4w5YQzrrEG8QnZfa0FQa9Fgie4L8L/jiDFzQFV1YJNJwaVvnPa1qOBDPA/esqAvRjo9fCAqOVvVnY/iMDC2fvTs+66LH3AAAAgkEAE0R8ORRUsLP/bbysWAGmBBqDRlE9FuJ4rI2Awo6+foGt0jIVQkU4ehx+8VliLGbZcR+zHpQAnj/kWh7E2pfHZ3UwE68BOv/ccREM+oJAsgLz3X2hAVX2ykFXMbkB7prreqgwrsz5kye/z+2yX1hdh4aRPeNz14V4FIW+r6lip3cAAADfAZ8tdEOPI2uh8smdzEy/iuZgOIBQkj0GjL1YjaFk+mfjxIQW4LsVVKaiqZQGjB55xNhousg8IYVtiCXFb5c7YYxl33FASOVTDYKpHvnPRJbTGk+cfBluVhqxgk2dupYklO0tMO1kt24uxONBTURrTjYoFTR6oM+FUH4HIpEwIms1Mw8jLSqr1OxXwaLmQsTuLvEutYU5ruN6dvLa0vl/UsKm75hviLj529V+1VgvJgIoSbZ9PkXQhUJqjCGY2xvNbAim8ePxiK/eJ6d2zHzeA1MYAWQPTNCzz5xn625YvwAAALIBAKqfLXRDT0QDM6RRlhZBpvyeH9GPSwalzSlEFHeCZLprZs/YxBfCHStJiN6zvYe9qmYWpExwCVoW1aY0i3ZLNIoHEouWGD7fhJN6qDgru/kqFRGoCKQRaRM4Q/EVv9NirhGNfh9QgtKX1ih1dGpo/r3lxQVYXD6Y30cHDPSU1i4Dp5Tly5ip34bnbZxv3icfrHqY+gnKU/Q6V8Mv80nOLvz5Goq0xlts8UzSyE+osOylAAAA/AEAVSfLXRDT/0gDKupQLkGrlUxwn7dWjjVbwzPdY4LhJFIEjaqWGEQt23N0AOb53uURFNbdNaa1574g8K1Kxqbr+lUOXB7N00BcFIEyUjjQSMRRZKruQFAFDF43ngZU30pz7Vh/iyJtP6qy4J5Hz1XicmCuSx0OJNOg93vwSQJq5+sFyiAVoye8fqu/jOA9hGq4+kW7aleGdcTEDd0isfu0hcVkbN/T9tptChlPq02Sz95OC7OSElWA+AU+lyeOesb1iQ42PawN2Wk45FS5+LKxJ0XPM4dCzB9e9SnzWFjCY8WuPkOKVR7kP90W1NxgUPCjHITE7Ud6fL478wAAApQBAH+ny10Q0/9LIdYIc4HFCYMkm07rc5IJ/zSrTKdHpNxJxEdyzfWfb1KJdYGXqKstVY/HRUTp8IQetVnI8zdZZkMbNMG/0/wkZBAHue4PGYR52JkW480SDBmaJtakXo4Jt3pbzRupXKQQ3shRGTcI/8e23uBzi1xy5sjhYx+BGJcakpAv8xADmDPDi9aWzvrS/HRBAjURR0qlkm2zw3AAKqz60DLmVaw3DYe6lMfu8shr/IaGuL9ka8xZz7KGJri3TMGVA/erylha1r5IapLTAKn49gYRFRC4/6M4zx7Il358PUJaMDh2Uyki+BFuFkHICpccty9DglJf2u7l8h+hEPAOQ4S0c/j+ylH91DDcCk/8csbVOzoY1aZ5AFDKVH15WrJpic/udAP5TRKq5U12GI+viNIt1XiIPokLdQHQFR+cHkVnbk7adSQQLYixKJU1gedrANs4MpbDMRhGzjiinn4HS+Bcojp8TdU58tAYT+BWsvCqjGo8NEpea5ZtdLITwGAYZ6SPsA0L1G3J+WFfWnvPIHL1GmHo7sCG1PZyH7ruGfL/aYHBG8Opb5Cz/rnLKdF/ye+ni/F+9t3zGErlbbJTNq35HtJ69Etz5QEYyRMDevL+ydjNCxGZ0jhhyOr8FurwdcmcPpwSKPV5SvM9A333uae3D4zUctXrl4SK1ahAsJRVKjKK/SnlMG4tjsnReqLX6yVTJkL3Ta0E9lDIQx68H+nsYg7vVNKEzMyUsZLtCopoX2CyCDWck/Ml/lOr/kPqTNslRS2/rtb66df+FLx70rNRNSApQokhWFftJc4MKehForqMVyfuDkBRBdYubG3kqFys+3X5SOuH29+lISN5gfgl4Seusd5c2DKIrTAwvIEAAAFFAQAtMfLXRDT/RfE+3XDllDsmhFZsQ4xB7ge917Xs41HF6Ih/QENdsakqjZjkSZD6wle95paBqMUfB+wUVfiag1jfWGTISGtziGq3xDrsNCsBP/GRZp/LprtaKNkSMmKa/UwzhjOhE7MoVxfFLylf5wtT0i2tkkldl/rggiNvu1WlzNhHEg3BJx70PaOyDhIXUlYJQLAgZWxetWbhPFO3RA0RlNb3j8+iEj7cLrEEPQq5m0dviF5AMmYUjGCqC7fu25kpegAmK3Hk2e54rFXrhcLct31UYQstBDPDZba2xLb2Hfk7AZXDFP7fuesc13HN2jMpg2+iuWd1zGSKc0vvWpi9gKyPrLXM+53qTBnamdJZ5HBmUdxEhEGOwUqwV9IV19gvTsmebMZTnV8CvUiupb4BrD+d4lxGru+gW9WlKppCzFm23QAAARgBADfR8tdENP+Sj+GAOnwXIHBgg/bvwTkzX9WoZWWaqrRpbtMzKOQK8pDz/Jf2f/QrdPNG7BKHDEDH6xzVCOxYfx+5+ahsJOtK4JzJsuaYifFgSK1yD8uL2MkBryw9OxWWNIjcuDI1Qd6cu+5Kjr8hvECcu/4UW/1EoWdWdbS3pRMJJusEhpfhGsOuDH2KWB32Bzi/q+JOeyjxmcUmzutsksDlEd53a2zxL8qVbw1+lC047zEEUl9GM4jHqj5FhudTPUJ/B7ZTvVw/uiupZXVcj7YXszw92cF/5z0FKxczIK1CK/9BkjtRMAHQAylk0bjgQsmvcJUk9zIdLxvfXPUsbwIwhxCYwT74OAxzQkADskI9hOcoksgtAAAAqgEAEJx8tdENP0Xyda9JGi/cCALFrrhsgX/2+6af4Z64WLXJO86jySbpJvCym2Yn8MYluoBGYbrkP01gsY8iiJKp3SLLj6cT9JXG2EJOLTlq7Y3YE46JgNGbH+Z362aR7JKY4aZKNoYc1maVpCnDit91OoIP/XqW8dsjLZSBT9uIsxKhO22ladfxhpmu12uWgv5Ep1G62OtwvRnx7IqHArOwtRmR/PhaUnFBAAAASgEAE0R8tdENP1pGNk4UnkoBpA59FPQpsADw7JonUeD50ekbeIawiMkTmsz1DeXLuEk3d8LIj/9vMTksjNIU7fwvlQ4QaMg6IE/BAAABGgGfL2pDTyE5LsCl6K/kSWyqhIM+CGiU5aXx1j9qOjtBFw63OlSo+s0KuG/gJrxJwXEGpTO4CDbHnR4bOPIgXwvRx2t6oLPS75kapfoNwudU6RTQ2vFZGv/B3QmMmXLf4A7yhsSqhGhnlv8FZhuw4Pi6Y7dThCAeOyWSdMUsAe+ILyWHdmDh4FfGCp5t43Nm9BdxCKdM/+KmqJcPwdrOkckdkwNZXNvZLvpc76rseRxcNxsJioGiKpU7M95g9uszeKe8FQ/YtX2ssHZ4s10jKj8WJ8Z/r0QgczKnpB43f/DXdshlAXjOZ6PpQrKuv6WRSm8K+nV9jF70Te6oBvgjGp0EqC0ZT3Z3Ij0XIOkwvFkvu6bOe+SogdNOgAAAARUBAKqfL2pDD0Cs/FjgsET3uMQRgs9GPTr9u5WLGedxzKRvbDGw+7U37xFN8EbEVxkyPNofIG/9yuVDstUWud+91KlBC17ht81q3aW5KQu+PSjU27oUeifO4FfirxCJTtPHu5Dh4QDdBXBJRX+IQePo5jS6b9zaIjnxvRsW1ktI7T1axOqMD0L8L0Kh22An8NSaqJCOvWhuybA6hVziqjuyfsQrCxacqJiKdTEYC3jIM0oPr4Anchk+sPRyQlNu/+upMtEP1wFronbd8/q1Rvf/oLvCDBrGmUwblyNEKcPdmPVd979+Eh6GJNj+xfsrtLRxgJbZaI+mclxRckLcN9w29c6fdA3cEBiNIg2916QlMIwYspU4AAAA2gEAVSfL2pDD/0Pp32nFPieMOsTVPTP+f4CiIIMZU/GL4EZO6ZSfXCBrA99kd29pv/QiF5Uz7hEmWc3brvHvH3J8nOJYsBZB+2dGmau1d+Ka3se+IS+Jym6DEhG4tq98HvYRV5k8D6fREEudiav8B5OCU3wPqeEX8+EXQg3tVN2pXrNtPZI1QlinWgQc031GLw9WkBbIYCbBn/mEgps7zLlnnc/iAuhue6KM6MpW6G6wf56A85eMLQ60P4NHnWGiUOnRziWJQWA7MBtQ9WgfhP+Idu5LtB4H0nyAAAACPwEAf6fL2pDD/0TGfRqlNqyudJSP41T62BnDHvkBXHJP7k4WDED7BHTYxme4knN2Y4Q8qT5SDRBQacXJJKY5/IKQwCKcjkXkNdXc2f3mBMofzu9LK23K4iAOQY4kBr2f+ohP+PMl4ls7AoFaH13xBUC5u6UXj8OaHv9vBUdkW5pBoX8xkrrAdxvyO9yR9AzBA1fpVxkXZfVRt3+eTCDywbH/DIWfbmv4tF3SEjusGfH5lFndUhe5qAz8zuabgq4jNDykwwM3dIiBZPh5pC+5o3v+jxbk6hxTWkUCblz/S1mPHKEruiC0u25WT2PP17e8VTNO83N4dGpP6Q0mM5LJ1P9nakQdRr0q3PRcV+vfhUq0cmlnawv2XncoX6e0ZUJd6moYuBEpNHwaL2BX+iQe3X/5RGlxd9vP1f02jTc6WUrbHjGct1+or8MRtrKd0A+bsTp1+ooMv5PFB9tPHLbiZ4sOgbh3k96tf+YNKSlQM9rR9CdmckOJXZVJlnJMkpkha2lDf7/VRRR4ihuH40Qz8+smyHCkg6FDx6RdBGwUaOXjIHc3KtLazueh7bxxj9pxobMiNkrStuLipVHgrkPAC2OM5+sv1M29TIGELxDSgmlUCFjbU7fFuEkYF60bQEhqmanZlwuCMCnj/tFJTgftPkMHLZ90oOZ1LueoHJUh7ZWZR5smoNS7okyaAlRt5aKySWnmqwCDHGgtU8TDk9i6ej4dG+mmJLXg1Y2Xww6G82gE7qErY294Ts/TGTfAefKPAAAA7gEALTHy9qQw/0S1l8OMuQZvdrmAJH8Uzse/ENjmpdnIXif70Yi4gLtMFGF6KP97dWJgwlka/LQNFYfmNgYDzk3ThIRsQNTMAZE2bMRCdXdMmsR+cS6XV36ZeZLybCDrledG3uoEtib9JqH1PtFqyroCmn7lkwXVmSgPpcmsRe/zwY+2b1zBNdcp6IZtY71j2x+6cfvMmMX6DHj64GHRdQoOqMuVWRE/Sh2QG2V/NIKL/hrf+qpjsyu9mNT2qH/oP9ytVtiExzSBkC0sF6z+hRRzGFEw+ybRioBZXZaOKT5qxWBJbxCicUWV5y13CeQAAADuAQA30fL2pDD/kQI2g0+R3Z0MOgJwrQ56/V6VXZW+vNV01x/MUTWE0XZbaAtdJlvObpFlyQSENonUosaDBALsdzqzgSookaKRgzXVor/PauyYc2DOrHQ7qUGDDQy291OTBFMqdBYUO62zNvsPp9lOL8vWiPGy5VkKqIKmYxIRA96a7Tzs/cX9Z8Fc2BaOdhf/u+sgL6O2fPijl5+1lg52WkdXYPZo2GVlfsGSS4jdfKW3LaeM+Iqp4zBDLrgc8rxW6OcXVQbi8OgjLmmu/dMCzpXIzri4hgqE+qGVt2emeVhLqrG45BL6XqfhL8UC4AAAAKkBABCcfL2pDD9Eqw7W949hHRh6ZZjNKvz2aIo41M7kHmG/1znO/Gmg3WiczdVqkgvgjSgveqDhvnEAEtzPWQTFRewxJ0tL5wHRbJ9VXQT5LZi4OqVnlCagYl9vDfF8qyw72i37bM5XuQqNYi22DfoTLuw+EInlO2psgT3So5m0cVJgCPaf4BMI2RM1zTWyU/g5xBekBl1uDVNMrfRLkhFyr8i/y1a6tCJAAAAAgAEAE0R8vakMPyprAo0AFnIht0Yby1o3xIjaWD8rvr7w7Q36z0HyLoUjlL5JJ2uZEtm8hAtjI5KAS7fWOLKUGPnfvly6dGDGR1ajzUjjAX7gp1sc3ZDpRJyfKq+FWDW3IuXYJ7uoPJS7oHNnv2zczcoqvSdEu9ADcJrFk7upVSOgAAAEAUGbNEmoQWyZTAhB/wIXObqotp1GM46HFacaq3yHsQB3KOyBz4SsZHg0rxUMnbeT9o33adwnTxhr7ZuiP8EbddfLqMaGi3opE2eP+t/HrDh7CquivveKhSBhHmwmU6UkMJkVX+FC4Grb6Ll8Mn+Qku06yBk2iX1UZWRXpc6QNrZaiDC7A6COHzNDVgU1Hp/+fRKTvogzYiaudisNUz6P0C//nnxU+DYg9r/DXP6OjmhV0cm93NQvsHoPMNDEt9u45rU//eOmTiLHIrNQ3V12/r44RElMfzXX+lXwIGUTDzw0T64POrdBaLTNH0Xkg8PklYhQpILRTkC3MxIiYq/demPBfiCTf0G4+dl3EgPPcqOMlaZcxJDO8Hb8xi+i9KceppuQou9/1C6/9eYoGUf7fJcPMXRkrUWM0winTqlyH1SlEUOlwLEl7P282MNFDssPw3GUO5ZnSN36l8f5yHMVjZAcXISw9icEDEgHcixTMVaOMr54c0StktzLq7Hj9ggi6q7fUv1VG9icF6cqA/JwBlqZzHHpMdhPWI44rrWb7kZjKn+pZG1uESxD8PAvbM9Y7IF6ZBPP9F5rzbTGa3YBdsiULUQI54p63R80FGHvRVeoFPawqUKD+rNed0793sZ0WBD1lLoNUQucJPhyknit/j64lln14x14YIAWrnorY4TTQtg+lvo1suzvU2jsB09NCK/YjM4HbWWgfWl0cbkGLsA9j+SjL7b3pib6yG2kRS0eGAztJ6Ni9/NEv+hHwRM9xcLU94JMszATUUFqP4OcgciyWslIQCgvEF1kKDw7O1lx8cb2XdXIxtFNfy6XKIuGt0jKyWwT5MbPhUT57r2WpheejUPfLIfKSBHKM9ffrFCv/SnAjqUs3Vrz75dX5njcVrlfRY2lQsnkP36yV9Rsc6IjVsGK1+/Dyzv27NaBy+EmppRmKvM8fxzb4y5uO6VSwjFfC3AJWG0KxT4UCYm+ldXMCpOA/NdY3pwGIH6GQLsu0dmgJUkaHPyni8jB4s707ToHg5o44Nh/1V8KOi22/r6MCAsMmLqbh23QAgPhlD+KBy/bVh2j7dwwvzL9CPVDbc7IiKw1+ZLtNVzSFtiVl0DYBysUUqqQtkMofKRG269O2+mRvq0sRNybzRxA6+NGA8z9UxB9HaK+qMX/2gs3tCGJrk/jIDrm0AErrnTZrI692OPjOwUPgLN+7kWxxQW2+zUJ9m+/84/fbpqhZbL2FZOijgn0WyeFLbZHAGKGgnWLNLPbzUTQpOlDwEInn9QSmzqnblVANt1xKlBVIvsA85y6tIeiWS34kvyDFM7Gps0dBlKznH2g+le8sjPSiLbkRhguKW3NJN9WBvsWErbhUmy4AAADi0EAqps0SahBbJlMCEH/BF3DsfUPAZk8mc/1DRzXaH/36cIWWmrDe+K+mz/Ea9axqIQ24oNTkbn5hR0UqtXqIl9llJvJ41BhPMl/qXyWJAcyIeQpVd9Xcln5gyDEkpBR7cAAX8bV0u+kHVFWfEpE/wWcpwI9ACZeTqZ8Vo3xcItYYP+TWKgiq67iYWmgvkndza1GssrGGMiONnT5JQ3bjdJ0f35KwKZPQBNxxCjlMn7otFKRWXsaTeF8f70HtR8E8XDRtXPVeF+gDPmxR2sI27QwCcC/hYbXs80xPMeRzwGdSA9t2FSgaElbyepFMoVG56ePil8hZjlFCLynIvug552JW+LaLLILHKtmAWCkdAFF86hIJPaScqguv49OOM69trMR7/EGEjCyQLJu1lshiWFEF3N/MvRgIO7SqaW494gkXm9cWdQZAEu7oxShYx7BWxszmRNvTO5kZuppk4SdhF7rOiqNp6vuZraXOHuVzYU1Y+qnqiyADVEtj2Coutx5Wm5tjPshBKLCSneORjzw1pwDDDmv31B4uHPhyfRbPfi3SvMTl2W5N/ffF84Nsdy+mu5lYzMH8Uu64qrWhWnB680G11amz7D19YH3FUhX+Fvd/U7cdKwk3gMy2yfDRjEQJqIh1OvZPOi/Yu8TNWg14eQg3nszpgxmtsJPpaeqcLU/yI0r51kMNIIQK1bpP0q4h/dOAUz6yGq7loFh/wRV4GRKLQixLZOMI+TK45ue6N4ibdB2UmwC/O3/V8DKi6E5Sjaczop117d9D3mNwmZDDHDCQ33nQxwlYVBk3OG8RYhQkkxLJSSa/59OeaRkHfLXgfJGtL7+N1WOx4afwK8Qa4pauiUWGhWbaXxwa3ceSKThnJaY0zO8OkLFTE/cKKYiq3sXDGVzlR6/sTPM6I426IgiC+qT+R1N50JTmy+VyHWBNVnHoP5udGQyhcEDNNSyNabP6JZXUKx4lbUzFllUMXft+OJ94lq2MduCI2is/gSyGI2vigCbGBxsECA6iwX+PHjW3OMgiqJABFsrDfeJnR/FZXfs8jKxkN7k0UQ8+12VkAn3SGm/oe7KI6NCsLXKHpEGANtl/cqI2+vzvxQMSAQTr06z7CroQ1nkrg+cew0T0JzMKCPPPUb2tqS3dSA1AN5raD3zuS94c0mJWEB/oabtdeRiVTEHuj3o0VSQy5T6ZHyRkj9aYLZtBXgAAAMcQQBVJs0SahBbJlMCEH8Es2ysZmMlTJdJFpoWgGpJ3dFqr6+FuENi2d1Hz+ZhuJcN9mO4SLOheQrUEmyQphtFZ4WFBt6RcHzo5GpQ9lrlkPDlCK/W2zn8w4rqXVhO2H/CQt1lmCzrJEMKDDsMEL0Rr6OG5AqJptiok5CDt2xHyz1IiwkilkUZEO/zMGa8ZoNS3+QdRWPPuoadqwhkzQ98x8HoRohhH0A9wGNmGz5h99dz5Yy2LykV/EGbfFsjUU0QlVoezL2kCEIJ7F1k+v61iVeGy9UZKGSu8a+QV/l7fYLrNx3d3cl2nQor54/vZQ3OFuLPb/u/Ns+eLi+0elm+yVYxJzvJmprBy+G68/drXMS4UcfEm0GdPrR2QEeWY4zLEBTFmpVroaObHV94OnX9p2TOzOqGTDc9RyZMkBt6nwvCOeZm373+LPm5PhcCEQEXCCavsFBz5MkFy3DyvSNaxTcsCTKZAfbAoscokx5eCvKwWy5adFaTNDoTvtferk7gTYhvOVMQgghrW66BTIzqxy/qfEdXCwiu2Tm4MAPJqJbPB8Fel+bim5Ye2aQBs143rZ6dmgNnub/qaO/SG+4mjCbjifvn07xAaV1/ZqVEePnhPlNA8CvCqApEm6RsoP7gdnSL0TtY8WiJIQtK21AtHRrzaa4vZU4AkCtJpWEQia0qn/sXW40LT70FKqOtCLSp6blhTjvHwHqB086JBi1HJezsKgrPDQQPN9i/M6YA1PG9moRQDaC9FC24KwoB9AFFiI4pOxkb3yAFbbeYiG8FVGHvwqKu7vBkP14tSQuuUuNC1iGeRmXAd1QaBifnIaQKJikfFvgKVsqJlBrIrPIhg6X7kClu/0Z5bSlRno1n82nxd6kZAoYM/hW6A4I5edJYMF3rJxeg+3XPs/gC7ei0xGXJ70bx/h8/GOT0Z0yyof2H3blc7ex9TlYT5e5yUbHZxZ1kYNr8NuZAKfBAt73yzqnLniXk2BYxHmjMkXmSDb2Y1dgIGh+p7zE6q5af9A2fX7FK3ZQFuTczH5vJ49WJW4r5EojLFzx2FTMVUAAABRxBAH+mzRJqEFsmUwIQfwt+GLoGPZJgjYBYPYVyIoMxwcHwY0/uhcPoQ+X8tDj3XirRcEsrzfgI+gmBLluF3ZUMAocmgc/hR2UU8rIYux57BXCNRECodWRFz+mG2Fsvi/L2vI5MGPWZBXQAAAMAAAS3BEC1kMSSw6yFEF0ytF+thZj19zbR5q4mFKV+CZAOJC2Gt9m55llSO6v6dufrQKTg+pn/qT83d/Beepr1P3RWj9GWlMB2os/6lcmnlKyV+gTst5xBC51p8uOEzbvBUFr0ucpc3qpZpvH1la+tos9M0acOJUrJJnOZrUOACYYZBFJDM4heKg7xBo5uQMmu1srncAByj+yNnq/j6gvp0kAYTNAciO1ViFv/MD2Hv9w2158xxa0zEiqHsdWPohVAwSO8yx3pACs/n4dYl9Zg+SrR/rtYjLcl/a0coVAUaXx6ouLSwuIPc4Ac1M6XNEAIgfKMDL3AUQOOWMubIOio6Gj5IaWpvz22yt225Yiu494ri3XI92uPl0mnZsQrbn+eM2i4XqNiJbLjdKyh7vbyuPPuccnQNoDQ7+02v/7DdsCoG8/SwfPSDTSCw7pdRyeb0CGcqfOinJeMYe+NzGkF1I12cBL5SJ3xwQ7ef39tKZC03/nkUHrMVE3RFjuJklwXxMg44Zu6SrY1/zHIisoiQO7nRC1UM5KfwttaUjJKcaeuE541u5uW+hepTYx8AoSKeplWpPBOh8qIfv9fBZNl2swXNA4AokqDTAkFqkvOy1PrZ1Dx7Cu49PBcB3XWk7+kisYMVveEdGKQzjcIRxSCUjUa5v6mqzy/AGHT/aysBy6uuH76naenIDaa8mVc1y2p0dFq7d1eJXX4xO80ZOBryq3P6XCiVXxenshg2cnE4eO89a3sq6Q2JLfZQpR0JExDYGXucKxFrd2h69DqWnMXon9v6FVSNMfFMdcfdovw/jVADbjQ+vTNQR50RzRkrVPq0qBxCORcqb6P6+11TIsCvbCLv0sRFTRCakOGZoeYGmGtx+gk375fOXouRl1+ygMQ47DwXFYT005aXaffJqaO1EElgsdVH83nKEz6SqEoN0/30CVCY3UVdzBxXnC/HE43DXFj9F3TD5ZgqdFSTuqXP++mUyRvwbjYmx+6ZrYNy2QLKXtI2kv4BpMj+zlsxm3yKkp+HsfEeMRSUzSsk8J4D1etGoOpRAqzG9rb9wTYr8aPru93gc2z3ItOaXi8PwSckRjfbtyltIkyYDexEq2v8sY0gUCBu6NiNB6X92eDWHYVCEFIf8i51yPWtn7k+NBgSAv9Plrc/FGd3tHhukQr0Zd3LV0pNYy1WXIgBkqee06mtc/mvgcOLMQESp8Pa07wzQNokTChh0HBumHpiBrNBbBJzoh2vdYEYAK6+inXD5/DCBIvef73iLzYe2rGmhmZY9D/5nQDurYLLqjBwZE58aLEPZaUlpzRA4TfHuD0SwiGkRTiV01J9kgEMsMRaTQdLLZuPM2JbLF8tGvzQgnR4weLQ2R0cqdtFwH+6BwFxzdt8bdaNANsKdfyykGTwDNviilYu2emsnf0xIDRE8IDfv8XB2TTm3gTqczFO2vrtVpOuRSZNK0RALAKXwGC9eRNR6Rzx6LDUP8BgwdN//arZ9N72AK2imhHfVYLxgXy7QuEA/YZX22C9E2UPyUVSLq+/1L3Uenyx62x8oVr3Usfrk4bpAVVrBGOUavNnvg2yYmQxbobr0HVeJPDehrH2eAAAAJsQQAtMbNEmoQWyZTAhB8ErKVw+Rsdsh4l60i+djNIhJKsmb82N+iv7/ONfgAhXMzLwbRNcAii7I282nadlLBchLHMZG4VN+FEDHsKY+4Vq/XeQ2dF2bVdv0Cn7hMYKIFkZUldy8NyUKBFiRB+G5v8pesEof7l+h3oE3CJ3YfHlX9NWK6YfQmYEjAXqL907FVdn6qb9J1V4mHtM/+mheIWq8E8yUK+1c9BF9vDzyQ3QLwz57xfUuekabGgdO1TpzbcJKEKiA5t1G0jOl+d/WXvnlC2lCfsIda5v4QOiFUi9XbSvdOP879kyv7dzNgxwCgZJAl8kFZfe/2TF+AI3rmBWbt0RAVF3efP3lpnEA8rYgCpSB7+2FHj5hhreqzCvSxnW4/awWLqwFXYRO2BifkH+DLGDZk97+7/mvncLDNm1N0guMLp0wg4obJZO39P/n0kOd5PZ8SJpj8BV3pYugb00S4KI+h1pcbfamEFUjWI9bj5hqgdJNbSTdOhXnWDw/Or0mYFGoMtK5JJcOb8x5+U9KrZTg3sfuembuCb9EiDeeuRCfOHZ074rInDgk6iE0KdZbqPK2Evz9fiwF+fdnvK4NCWpA6H6FRjgjdBKzvZ6ue8d5csTT74B6eJv3jBrc/XfinhWCigwwHbSTV/DLQawcQLFCo+Kvw5rL2yI7bCpSlX8eZnZH/Hik36ELD9cdOKCkyOdKo3fwZMWqAOgU112kiUxp3H36EmeXMunDNh2yyqEjOma0pnWjlj26b5XzpycJYFa3lBJwSw7yKKm1YrAZ21XxCjcbPr12oa9U8czCsGi3zElMNLvP7lmoAAAAKCQQA30bNEmoQWyZTAhB8GyOAAAJoCADxZj7WCPEgBQZlQlNynbhXxx+kXuUghu22mxkTPcE0PlnCJbZsPxyq9d2QACJ+fZTb6gslcVb3xfE2clwZo+6Z1j1nLATwC1VSMek6uBJY4XXrNrRzfCAOv4WacsLZ6ph8weYIsjODm4nvEUTameUlsccdM575UIJAqQFpw/XmVlCPlTHfz7URiW0RyNVnWeFaknzrpP2NSpMCuCJkztxn9DtbRLtnyf38tGNYUwq4fFGhvfcr3O4+SbeH9QE40tdiQ970bIagrt1sEl1pvTHnQX101S6i4uM7u0jE1pKiq0rSm1v1BxT1dg6iMgck8tUG83L38DNUy0JMzLq8itTKR/+/w9cGlNBaAE6N209qyAuc2NXBH2Cyvgg+KK1PBx2f9NAzni2NmsKgCArYyIUd3betMDlQxKDBJH5SRrJomxr85vNTmRs8Ied209PFAKTKNfMWkY5g8bjgOwM77unqMaAEbovgHVsN/awYlqsmBfJIktt5/CwDlfjbUy5fma/VPsGF4e5N6gEXxXNEtQt3J5ONbMmOMdL6kx7+uMUuC7emdn/v2YJ05Rb938LibDus/fFkxRI+ZPcDieazNMBzeSZGnIRBm46hKE28ei0PKM/3NcaWyF5WEPyeRU4ISJocdUmkK6+roRk7Ce6EUVVjMFBW7uy29tvU4NQkIQo5u23E4O0oFwXblahvmKrCXvwVu/haT9Fnx2S941u2CwIvYSzM7AeCkMMg1dmOX+P5a6Hg854adSBm18NmJ82TFhdAnjjhtwTw/sO7EtkfT/34CDn9PKKUowxgqhuDvbBv78598cWF6MBW8NII0AAACcEEAEJxs0SahBbJlMCOfA8YBOyoEmP3Vg6u3lcAkwQjQcqoMAjFvmn5hcJfYDOc3pcfP8pU0MAAAJRnKjMT0A0FZoMMGulv4BOKEuXrLLdvEbFV3zTZccchrZgQLp2K5+NI6SerEheq9TPXxHVFgPvOanv82/Xjf2QZI9oXC+lxtni7px3l0JRPytkA3o8zvfQxGpUk86jbPM9oA4jT1yhpCzwsSrxsJjyHCiXq7Eb0q+K3LHrvaEJ8UYmrxkdTsJKBFQ2LtQSXRdQixYztQVgpvqKLRpAAu7I+ahrjnv/wJHb4tMN5ZqmqUR/U7grvYVSwcf9YeGw9sdV1RxjbTNNQEWT2AKdak4mnZwiTiaS+43eJkdCLtVqD7Z0esht3MHT8wNfruyNWepTS0AGzeT7LP3O/zRqyap/QOjo5NB6cH7ZqJxjr2LfznJPP3DYldgF5HRese6ZcY6tNCSV7K32vZHb9j8y6I/Mew3xvKq/sLJWd1p0T5VBGtEB6D80HycHqwkHdI1Zhc7TocZ9b79O7/uY9p3NZqZ09bBrKD+QSdexXmPw6kcV7x9L2C/4w6Q6+DRx/2Sh7Tiu/g1HjEowDzLMrO5IRbxKDbFa8o15EuxcaZEtLV6dGXu2r3oX+ERH0cgXB7FBvv/T3qgzxIWhdrs215SlY3h9F016ymku6RfbHKgChohTy9/5brLQS0u6GD93a8lnci5ujTHmOWYFhu3u96rsJGTEL3q1PdiQv+Its7G6oP8iNHBhI4Hxx8Ctk19w90/OSYW+tbog7b26rIXvxCy3GGuaVMz36m0poDcEBvFc9ZHV0TXsqIuUVrjAAAASRBABNEbNEmoQWyZTAjnwI5LucfM45mAoBJ58AoHbUv9U5sHsfXVKBRXJZLlYWyVC3KHPLQhxHNbIgudoRR8DouMr4y9pZwogrxbBS8HMMBwqZyMB19Ii6RQtBF8PeY+ZgnIOpGTOwczQ8iVWE26fV2QCWa7qwKCNe0HjYiQerkc4NLXO+ZIsTMQAS5dK9eKfc7s3mwxcQbjXJ9ZVGLFFFsCfnFmLFFPfyYgRI0pF7z3WUnSM0p/AsJPfgrlhtKzDqt3xnqFC1vUv5oGCc8BSEL4OHqM0NML4V58F0DOJzMRP0Bp9C92/zpVUczeD2MpDTCqKzmV+gq9qlpzI1nC/ATRam1fNOvXwBf6vxgctYwHhcxLafBIs7h/Gr5AREgOlKrKpbwAAACa0GfUkUVLCj/HRzKMwTMPOuE23u+wm9fBkFt4wPFK/GRQTW5kLkrRBBXkOsDV32bwsqQbmBBk1h0F59s4x6bUng5hhcDmkrhHBgJqNIF6aGEYL0AjVbwR9tnbIJl88AxynaPFrWMqIuFX+cZd5GPFEtQLdG8l4exgqqAX/cAsDm3gEMWluIfiQpBgI4D8F77Dtm7IfRro2MgTBOiWg2y06WtJDlM3lRb3hqHViCBKy/CAMiQuPxMFjLyjy6gyFYWx5i+eQKTvIW1vypP14wkgDdbDIj2/opOACgmSAQAhduiRzuhY4YMx3laLyeBtGP5EBuQ4ZkHD5WObyunq9fM5iXiMce+1s4Einu+MaiHmtqxSvsrrTN5NreCunsnm/wRregqtp41OuQ/PdVlYFTCkPyTrSUkwhlJ0DY+JBkA7/FltHVMlSFjHFDIavAatJwxqyZQ/er7FC7KtpyZ3A5ql+zn/xbSlSLRFQAyeKLNoaFWfa2UC5QJvbrtJ12gz/I3hrnjy8dS1lsuwF6VrPJOydLnKBS7vIM+F8yzaPPYsvk1pTc8RRkGjBhXpNzJIY11C3wSZf/Y/TZY6y9rhnIT6QdesrdJgPJtgJsnCUp3A4UWk6HEuAeocWbUukX29Bp1mhgNoJ5eLqNhIM3qUi5ZbawOShWImANrrv5rgWlQDFt3HSOgjGqorU038e4uIS2ew7w1OHAdfEgnCYkY9IjXsw2fY0n1oNHC7Dsy1O4SG2LMLWZRGvao4H453XLpesEQKUTrfpxZv359Dxz26saV5Z+xlkvKtXsImqKXkYvB7Ls/xl+nSRQTZndqEqEAAAIEQQCqn1JFFSwk/309EigPwA6P/R31CRguWaMOMSHXgZcieowCCGCzuIyxXderVGyFw2GANHkEuwMidhOAuGL/kU0R6uFXT+ONTsvLGP1eO8Aw11l05WM3SLgKvAu/51eJ2xMR/+UUgRB0ITDdXkB/72ErxhplElFPrsXXtAA9u01QTGpOqWH06nxB4UeszIavLiytPdkRdYsWzZnJDRNBx1zGLlbHTAjFIiKPLS9TUXvO4t4aYsKMFgVI2PrKR5sdA0LvijvD+s+Ww0VpFabpxQBRIJVON1scbAQVN5qYS3hav+TAtqFYgGfL9kbIaRepMhzuvXmcxobr64LKUimID8t9DjW3CqoX6OOQY8RLSp66cZiDWPTLSUBNfopkoxgzCYOMF1mer/rpZnq+be+cIhvmdl5WV4JPA+JylT0S3tZV6doJbBgyKhAoXEj5Xd84XzruSQSH5+rYQVhFM+Akr9g/jaKkDYr36Y7e3OGGCbJ/QFflbHK5sSNTYhmw6h9MI69X7D0d0ZKPJNiODctnJoW7Nt1gTMO7+Yj5tFlWnM7wtbvpJ1FKJQExDDh6YzjRiJP4uKJT98Ro6m4KDfI1qfis+zsV80IVuBQLQo9gy/h1KPP1HScgNTQkj30Rt3dfdg3sLb6HW6BQzvj/GpyiaBXA94QwmD74FGyLO81irO1L5LipAAABqEEAVSfUkUVLCT86Gt8QStKdohC8UbDz+wP5isPoxigFDOKVMV9fev6iOVzrCptogLpvxSxyCm8pw9KZSKmqb5tZZLYKcV0+zpXF3ds3N/mjBsze3iONOh4yJry5FJGhx7d/tZBm/qgi7RVQ56nQR60lF1CRrEIcjpajJNBzTF6aOC7gv/pMqOy9mhz6lOdSY0T+aB4K/wah3A2AJWk8pBONDYT2wGHfXJ956fGuiVbMzBCScBHvUMhMyV3hzxTw1SahGC6Bqz2XVVQWPAWYk4zd6EnNwGALGGP9BEcqt++blYSOiED5THBP8Cs6Pucaa1o9z4tcg+gCTRJGQj/XfHl91VMqh4Xzdtd12c95SqaSNZqD9ZjvA0wpBgmc3rbsVAQUHu9zM/pO3nRetoA8i7XsFOk2H1Kmmbl+B6Oi2MgFZUhKOT2oruoUVb2VmhsXdZI/LzQZNhrF0zFVRRbgi29EHfgziHzAQcEaXP/SoQ2XYsG9oK56khVRAIs4PlUViWAxDOu7kh9GHrAEi4oSfCXdWvXDaX94+xA0o0nG9dd7DIDm/Fvh438AAAPxQQB/p9SRRUsJP1z2NQVJNIsi6dSy5wnUj4Ekp/b+iQ1Ilk/jCGeQ1yWYQvpaZIkISDyazyMsAaaW7OFFRoZWONO7u20hUla3rbH/OD5ty97ceq7qk2nxsuQ0wZI0Zedm8W70oNtpkcuuKapdyISg4OSPf7PgZ7i+l0N6Q4Z/YsdqyytXAlE27o7sQrz77SI8HymMBMwA34Pw6znuONccXJzAVniMEHCBFuA9g9rf8U9bUvjyRrUbyiHgh2l8JYrJwnu4YzMvMbFKEKQAK+TppO97WsQdBRY/cdeZZVrE2QCzvJRNBQGcpTGRS6QvHuI55r/SkQyxuzNENcnpaRfkxslYhWZx6keJFffjvq5jDvhKvKLWo5+J9WfubswH0oUo0Cb+COuzHWyNlDBvSW2pu7KIOtID1bc2ot9NmPpJUNGOU/BaTLBfa1bQZnwTL9cQFNgac0oF83Ukirf7gJX58ZWsD08n3aB/GcriZkquP0jJL6YDturop9dbqvQcMF81rn3y5YdCWP588aEVXAI8JXobdJglNIRt8x/1yiVdaupF0qEO+WdUY3RrQhgiXHmskkc3oBmb0X9RnACzKZ0Ky0PYhS/mfDbOcwXBC8NV6t9a8+/tDnxrCElIJ3x+BLQJW+qctYDhKO6h4pFLOLst1+1cZ0IPsEaCK7Olvzq8odlIosxu1npPiPgnw8yQLX8IU3fKbykbmdt5vwYVvSAyLQBaFsoWiVkPEQXf/pe/pqw/72ES00Bg7QpF8/C7StHgeL82G+PDqqCovrJSPaBefvnQKBZ/Lq/SeYNLnnfD0GL7VUbpCwynh3HC2ISgezA/xCDc4xnuK5gYTcdnT2D19wX3FVTfW8JHcpJJmbiCiWmk6/3zN7zy4HHmtQeGW88tXJ1Jpfg1bOjI5uls+R/HQwEx7GXj595+HU4APCr4abL3Xx0vWtiHomrG22Sn10PChS12sdmv2Iy1qmw4cfAFmDLvNFE8RQTrCU9v/lRwFGjLCQICfT+9KN3nfCkV9xf7VWF+J6LdNHsCCIO3jwPREW/vNg5XbvFZ6tNf+ie4zxK40hAns82+GsI1PBYBTagk1Rp9Cojtkn3aX3yoF4a3NBdUEfd6qgXb58nSiaLFwpnXyOiXaOL8eXH1M1qR3SOAp6AxcgcsS45HdXzEDldIVpDiekQZmVvrDxyKbEKPowV9kKQzAsuM+IEqxObyhNmvu656VQVLFUDo6yBSfzxSzSrrCR29QRlJ4wODKIC+jzbzWu8b5wZ8kn/y4xP3dg2RhVUE5efGfk9eEZr0265t3JYF2C9yfHVfmoWgTabBjUOc1SQYUrfs/F2enUA8LWGwQQAAAVZBAC0x9SRRUsJP17UL+p9sSufN/0zr68DpVWEYsObZgJlT4vs0+9lBiurjUl7BVTs6ZqGIrm3rjOFD1v22EC38hFDckTbN6iz9QLPSOWYGoWI36d5qvF9Is2oA8HYNro5NKfZdBLYEkZokr36cgxRXnh5nZe5QEX8U1pfhqHbsyh9cu0yA6mwnjol17xpUheA22q2GiM6IGtlaI6SX4edBtnc/AIq/uWp7ImzuE0ys7d47epaC/TFUpiK6rm0RpiHBDGo9NODU5FSgrttKwjltGBRX0lVk1MTyXyTsxUfy2+iJhkMuWp5XVtxsYLDCn45S4ILUJLbRX3qeTYeKAyoDE0ajcu6Uan814mAIGoHMNP8c933qEcK8LQXOk0GtNfoGzwb+SKycn38jlW/uWyFuxw4u7L/wXwFZPWYJrtlTVnXGCGenghBp3evwv5WC3uL/HIG/cYUAAAFQQQA30fUkUVLCT4Oix0DfD3I1X4YcR4PRQpTkKCyyi7KXTEE6G5wwDNVo2Vzm1y3WrZdjzx7SOFA42lybflEHnM00ARxvdbVPGZSAHBFOX4SMc9nFgr/BAvFKXLA1OkzoQFth4xJeT1de0YExCtbvZ+pbuovK4fLMDhUbBzaCnJVeYFTIh4h6iBJj9N4vHNKeeArS4XUhFM1NgnhYE3Tf2GwkQarHoK+FUQNNP8Om9qatDb9SOtEQXxsdrpq6XTmNr+bPJbulY+ZhvjmpGkfVhxLFa7X1+6/+gmPSbzeRIwp0JCpzq+yIkZP7ZZYwebf15bkSSHLa6fHMaTKZAk0mT158BxNbb3mn7CwXM+Y8jj8jGBRyFJlgD6zrIKazGQ2fZtPH6IWZujEOFpFXe0m/LyZ7iBYmwlu5Ewp9pU9hG6H9YPwxaxRtAgPPjIxw/xExAAABHEEAEJx9SRRUsJP/Wv8VPtjXDCntbjwoDSgWIILPOYw5HkkSVd3Q1IkXSsnwvtT//REv/kadELzlNOpOB6jbqrh3B5jvH5NnyRVMcOC7AWB+LBd80Auf5932lJYi7mToE5dbe/Wt1TFoa1JjE4CoDz+NXs+TrshgCc8dgwMCZJ5VfEjmsK2ZF0BCzLvOSCNJUGLyALiTjCkyqQnL4JxAS+a9UvgakK3W4ERfcTJps8J0jjuezH8MBBnjkW28hS1HUfoqEWvdkcqu9vXFonIHvzj59Yi46OT7ueeHkrL0WOCrbCZOion9U5jvw/GeZje1SyHE05rNlNpYYdIK6l/uY2/L6xGQAZVCc6WURcqhqRcFO2iUPnPGCizuRrllAAAAp0EAE0R9SRRUsJP/Iz1WENMLdALLldx0n8yQZLXNa3MnJXJckxIGhFwHK5TaQJIs4tP7okqw2xLt3XkO6x/fYxJBFOYmOjdlUTkQRV69msR0gp2uxSokJLBIwxZMewuRUoB6BmuZSUC1tJ6Z17AbiEWXuJXYlkL/BLJlRvyFxMBEgHBsbzfZkOM2tpDQ5/MAtWYhhLyQBWZbHLJdZRoDuPF4bjhcp3yhAAAA8QGfcXRDDx/amscTGtfaUCH3bFBwoRELuIgv5p1RKfrFxO4/6Afj8+iYaVek1A3Gu5GvmVSv1CcxOUDf5lqDLvWw0iJukegmRKpSH3zhM3bUrdyuCi2sJylAIA9sh/rjGs1llsJHD6RZ8h/2779x2sui5QZ8g19HGDq730YdFJELCyMlFkmX/17QdMQcgDC8ekZFTK9Tv/ZCTjXNjutB/WQOHdzldrp/Ey3li6n38POuLNkD04Sj0gwHBpCYTrG6LkXYUHYGRR/leHxLfBXPkkT+kZSx1YYaOsVJt+NeDw6vvTPmnePp7ZmSsEcUvzxsctYAAAEHAQCqn3F0Qs8+GqKWLPoXkeKEAAFLAoacWI3sLOdiy0AL1JdX+k47w7zalz1GxUfIIe/slZn8f+vpW6WJhqr1gipEowv2flKt0tgKooiPlAXuyfsSUfV925Lv+lYV7QFGWj2a6aS11ApdNJkaHJ3dCosapJNa7kyZaZanPHxNBhL8H+Kz7zFDnBYKNQ0hXKoWOe225QIPM4eLtdXOk587KlYenSfh88gEEP21xydAYGR1xZtT9+2Dr2P5th/7Eq/3C4omyDwFIymQLjZgFcvZRh//0N8C/Vk59xCmQQnyj7QID5ILQ6+j9oCoV35GlHBqCmPW+KPq//qh4cJ31JAGStN5quUeQaAAAADtAQBVJ9xdELP/P1TTHb3ReBoAoWDbn8ANHvgGR09gZ9L5kmLBOAg9PqrQPZuAWaUQdm0+Uz2r4naQzaT3f6BpMKKhwfY9dYWrkHoeaCPqLw4ZJw5DB1A58Lts4hdAUDeAzkjCX1c2QmWa4M4r6jy20U6fwwm66VlrIJw/tbkTBOXqcj15Z50Llbqr3uMlS2xncBHDLLj12Juj4rGXcMRoykY1ChUff+ytS08fPWwaE29UKUR0/EqLwk929fCG1exwtVdyq3CTLO2NYJBSlqb8g5zrlCTjFnaoKshNhdayLs/gKOz/YLvtZfy9z2IUAAACYAEAf6fcXRCz/0EyJlPeS9XgAWJWFY2BXBHpo4BWsP5x2le80Hh+SscBkFSaQVZHbAe2WecCBZ9lB9qW+Z6w5AWYAN8jx0LznGx6XTVEmuYCp+KrQAC6D4acKpwPuIS9gV8xoUge7DrOU82qS1/jVJyWe1DTFoxswTZQ68PWA05JWynMVp+Jb1tKo+xDF/4BijRGcau/VFELGndgd17y7tS5s58G+a8AMMd6IV36QmIErzz2M869iOQXDJOIBoqss4pVNceBQwLqRr4HF/fk9juBTuVkAfqpBZ2+FRX2QX6cQdYe368uP8f2LNpGbfBDCsnmfMc2Fd5W+uzLYAs1T6YcvR2VGi+FPtTZlZOEqc/HlBKbuMeuPb6H4OhxDYxYoMHNHdom+hZi3lUXFL+YbDgGKeZp6sEzVdZfpNGBFrS4tsjsArxmkiUVcmOtKwep9j77ZeByheqm9O5Q1Q0oXuGa/zwHnXunIA6OiD8Wf3hjCM83sF0QbkbC2/qyT/p3S/OtKBsHipTM27Y/t+F+16XI8F9tOVed+mrAYYJJGNEet+wI/2cfGkf/c0nkvk9uA9V4Wpc9UuzWb6GffmFo/77fPzQt4SjHruhV1Au/ikeHsB6pODQ4uDjIugq7ge603f85c3WgUwT9lbtJHCc/x3lPYLffD0SmBErrLp8QvaUtDEFi2ZRWJ47v5Njf6RU9f1h5E5Wo9AsvBtTkNZOThkBbjYfkYgyVN9YUm9waTpHgnZXB2QbB7HovryOWfqrJP3LEfdTz4ZBaSJIMiDaR6vdjesvKbfMbN/WmN6tJ9xhIAAABKgEALTH3F0Qs/0GY00qzw9YQuvcwXP7wAEqrisn6TYrTfRu4+BqSgT5tdfpkQAxIFhwk06rPz3stGM49ti+VgEKL8xbpUS7r8OyhpsQ8DSEmymJBIEvrprc575vNMH44MV3V3rwDhrnSHnjTe7xgY2SSnZCqlI+dn3vHZy0991lQe8TolFy84luSV0XEZnwa2DLb7nbgN7vV/v582jJEJ9h9klH0sYd+j4iGog0ACK3YGZqtN125oxSyj/HnhwzjbGBJfcQvvFM+3F9fAh/HSrHeWfLu5cD+HNGDtE07l0drB88PDb+e8dXKhrCGH/kkOA6vaBfkXdRScepMiRgXa7TPuwualWzZamceVfFjQdwTFzE2GZcodqFJB2QS7fj9q8ZAamIT66EeDC0AAAEOAQA30fcXRCz/f8W92Cjuccnim56AGLuJDQEtbIN/PKQyMbfOXm6xnXr/VxDFmnPlVeanbiuvt8AuaVTMQED8aQzY8fk6gbBxeY1caE6ZxdlNvAIU0JulX/aPGv/HYkrmmz/AEZzIqOlGKADTjV0tcaJvgu1VKqgX/Nl3JimrSrivb/Ky+vjlPpeLh/o9zCESqlQHmuEJ+Xm+yhA88wUGieC5j3GvswDLF82K+yB1+0WIzF0oBNJKk1GDZV/6NVfoORTCYoT0BpiGqnt7H0NrQdL+LJVE2FHy7ZZPP8Op3r9oeXoXWFM6oKHBBbJJNYRxojxdMvQstiuSnpCKmPxD9dZxIutIzZZh/oH4fcfoAAAAxwEAEJx9xdELP0F6PP9T5H0xFVDfNl5RdP9DF4rfoHi7kEWPup3XjVXyiDc20h3Bg3uKuWt0cr9LJ/8KJhyxBFrav5DkR6zO/meeF3NzBDwjtoTLUB7C2jfzXOmh3nSwT1cJ/iM+3eqDicHeyDdBUc1Vc3Eq1XBn1VgpUJ/UT+N/pvcXQpexJL+FGKWDDxMBUbPeFgIaDxWAzhCCAlRXev96eoTLmvJjnXNnIur5JYypaSTIkFCe0+C5gi4yRVSzq5r6tbBpQYAAAABzAQATRH3F0Qs/KbxTEKrP/hADfsxUtKpIHTCMMx3wW7n7mAsU/I9t3sltKt0vEef0KE1QWwdaeG+F5BKY09CPTPrHmzeM5NSNSsMRXP/jjGoT+hDoEMa3mQDH3O8hfwhO4crsmHRUzNqFlwhEhK53V68CsgAAAcEBn3NqQw8f2dr/JtM36037J1x3WUGa5opBXsmiDE0qk7CPt32qrOQBzcSZEQ4Rl+gGfOqys4TU9u05XpbsFK/rSTt6kIWy+FwbpZuh7bCMPz1FNClNsIOPfqH19tGXJeymNVFcgZI/XhqIheCs/vDpqzDugcqm1zl1e0Hc5F/NasPwjf1DLqoGCqW4j3lZfkNZkEA26vGaFariVSVA66xoasjNB8hQxLjMDU4PunWpbIfZIL/ZLyYNhOwKEHcZvLsFl0aJDNvYqu0rA0gyOSincreR6esjywh3sGmBAhBZd75jZc6UxR6NKeylHqyxXrKcN4Hw6Tik2pO1H4VlVsu1nNbBdawzHkHffjTrvgs1cEYzQZvSBY3zcbjL9s/ea30Nvx2It8tcV7hv0faVo3cPeh35pdEg3WGLlOPbE59+DSQo8jITr8RnPmiiEsY1k+LI4BAYX/4EI9NkK5lYOwrpSY7fEhUPqItW1DzKVnupqF8PJUXeCa5v0WceTnpey5R/QwE0NhEIlE/tOdJAxIxuOybkCd4KJukg3va4UsTu4o/UBMi5hm98/ni8+7rGHpzC6RGMr9MxQfw4YjWgAdJt4gAAAQEBAKqfc2pCzz9FI9x2JgSm/HL2n1DRQlAHfIp6It+0AFa/OD0h3kKXfubxksBHYVBh7x2+9LLJ15kaBL2uAmd/u7HLaQEvmwUXWuY8gdNGauAwLbw1WM6Lj16DkI7v4Y3jeby7j9vpxtftJzq7UX6lMVGTSI9njs0/EsyQCmfeBmzXqxYdHCWcMRYIzngbkjS2J/hyQGqQEd7nDNv4Zz7SnVqdaLDfpwfLfBox593nk6bzEPtOoAgiywRnPLOTQoQa1cKqAG7c9910KbjucOSwLIkbXf3ySyKZL2xPsmmd+TlSuxoX8+UwhBL1TZx9NpIu4QwASoKTayvekmyBCZTgLgAAANEBAFUn3NqQs/8/tACAyKhiysQo2Nfocg2gKANBG+jSjphj4307a7dncicBAoLYaFV9/BLDguyrzewOsbxwZUwGP7QGKcrdB4T6wFr38YB8UfyoCw4klizjqPpSwNfkwcMdt6U683BTUY2tU0uQUZzHKwyVHXXJfe5X4pOJXW4pEX70+/nzjCEbQOOALHhAjT/g9hasEoi2YJ5sdfF5nNMTtS3Dq310dLOxvgcp/Gundi+/G1k7eiAIh/MIcFv+4tw2s7SVkExqI9Lksubz4OzsmAAAAf0BAH+n3NqQs/9DggHgteoFsVm4p9ACTiF7BsGeqUWKhAZG9qqjnymrdfWVCh2D6eHm4ew3LZbMqzAB+WBNoL7Mo9dAwxfCi1Gs43j47gxi7PRKr17oYbSNz75hT/pz66pvHJuYu+OLuGcftx72R3gZ8SNZ+zBqILZ2ykyj0sCSgJ7Lf+Mj+1D13Pw03a1adRWhkVBf5MpWviIgosRYwA7F768toFa5Jvdd0eSmuXsM5Aju0V/ny3UQ0qsJcgltL5ghWWNwZL/lcqswYSPBzPzizxpvJtVAhy5PB+QoJxu89Ri0VfRDZozpxB5/ybx4FrFHpUrEwOuXJP5JAvga9pOw9Gl0B8GYS+/IUlP4PG/CsmKq/WpIjb9afz1yi3sfkAspakTOSIelvrXmeNtCKn+sn+L5vkiWfPnqFzZokqID1oZon1ecDYRPg5IA/2dzrrikJQ8Cye+cGXvJtwODU2wCjZwDtPrLsqG13TAjBo1v6oXnSPA/iMXXtM3uOBBMpVRYffJ5fME7Kpb3GO5D3GcH0tYXz+7Vfeed8lqE3uSc5wQyiA8tqXONAWXY4+dEp/iRJuaQLAU1LzoNJuqV1EKYIjwFop7WArywiIGlXwMPf782+K9qyxwywjbzdqIH7HrMXLNyj/rcYIU+FkfXm3Tsg58buvzXRJ2A9+legAAAAMQBAC0x9zakLP9BMD9S6AnjYAA8GTuM+I+admh6ZZkDS0/rlxNeh6bWU2q+CiLXB3araLq89jD4pBSLRLB6FftrZXjL7sBFkGuOUEmA76RXtrmHA9fDzci6Yx5/0LY1/Pj6uyKc+Xn8kTjyLeHf/dyrT0LK3t7RLLP4AzLxsETY7R3VoX26PBkfSKpewyvP0RqtEpa5cvUx6POOFITkcgH3C99u55J35mMzj3GOD5DiSfmK9RCWXhT9BpLSp1xSddWqhBFYAAAAogEAN9H3NqQs/4Ij/brf5KhUnssulP9POBDXd8rEWdBkhYKOtFNXaZKZMktmYMkGT6NbMBBnftmrJrC4mbEMD8PQvwNK5uUlVFFAIQEqgelbWjuTyhwo+K93MSwFdco48o+RWm1qpHe2SFKydHGegZQlx4clYh65OVNNCnsDmXxEdyWJZFwDCYFbTLLv5N5xef/8ZX4PvgdK9aHxaw73CYRShgAAAKoBABCcfc2pCz9Dgt3fnisru8dh2ALhD6jMYpoeH5YiFD++/Yqj3WwmoLwsVMMgW0pM/CCzzlIQWdqrp9jP4CNyqMPBUg6Rx5RSTj4rsxLnij27peE7olotDkOdAepXNsRGL1UP6vQgypxmJY2KH8zx7PbKsTewLCoprzIwLiyIZRa2PtdTrdpZGoDUKaWTdkRB/EhKQYf2p5N0h8iNejomgg3UVX8GE1wEpAAAAHYBABNEfc2pCz8mmRPDJVzm7ymCq2O4W6+Q91GF0VPunn1W1VTcZIMZOwwrmHmS/piMoh/PDRgtcRuJPPgWiuLYKDXvAkwFvuY+JVwBHABrgIxRADhlq+yPVzYldaBoCLyOpeWDH6WgbVoBX+wvTI0SaoliBAZUAAADW0Gbd0moQWyZTAhZ/wbvHqY/i7wN3l1WhhhG8YBRRTttABNCzl8w0xwI9NMBuScQiu7x+N7KG1CpQlrM4xkmKpqg7y8GwyBPVpl7KmWCpMWYytmONF/GQ8/4U1i/4E6vUTPRqPy143yVkLAxmLiBzoAAD90qxTGbquQg19A/sIIJyOiTCaZg/zRMBTEWpF2gvLlageg8DGl7bu32MJDC/z1jrvOUSBMEj2LV4cIWkQjTloUQUAMIn1mISAU+t49pYnnC7uZoQSsY+7fxY3dE7BVonxqj+hPQ+t4r2H24+hQ/TQ/niZ9K72kbYPeR4e+jRJTmE392MeAmEM2YU3VeQkD5eANFxjuQRlzFNIQGu4bGGm2PkrHi8Qvy7vPAppTSMPHCcwGMLmy+zbFz1irEFMMz6ld2+c7FU93UrBL6H0lL7XNZ/3fnxZ2d9R1EWeLueuAkoMmpSihOKWW735S67L6nm8ZiB6eSV/MKEEjQNg223647IJ6bROLnkSA+9tEKeta/cNSgaEKdJrXa7sdurucl0EqXkKeMPVJxfNkqKdKK12YNKfNAqie6f6Akns0Kd2dd1itEhbK6xN+jpGzFOZuizgezWRsZ4ZIJ9tEBa2AMMLneAFq0ijefxHkQLzGIsa7BmlFZnscYcGdqMeK76xv8Rli0cSaNoNLoKd9Gxx5EL3qItSzrRyPbeAndYen2SOZ1LaLjNWvri9UINAfKW05sPGWj6gqV+aobS+N/K605zMFCVAscHkkmCLkzyVKjuqwpgdotDSKhD8locuKqgMYNSNS7qtkG/tkwqDU1z/qyp394FScKMRUEFPicfsgAr07LJ9fy2Vu8TZtHZR2qiTXCrWrmajVh1u4vnvIwMnRa7+wvEldfnWQHlHF3++Yrl29crchCCcRF9Aq7KcxnFE4w26oEN3lWXGh48qJ4OECnj23egioOqwkXxyG33eCZJHiM5bcg39G82SzbANN/CyyJIshAYVT0jBmJSYY5wltPzxyFewLsS2C6JYJXiyrtD0npR41soXtzph3LNcgu1W0CxKRn6ctdj+qQRpLkb++hjsdY2UQT32BFF9WKnEeKeolL+S6EbNegZ7VKlIRbA3yay78rIhH+XOQTnCqNFLVb84VimiVdvjR2i/kAAALEQQCqm3dJqEFsmUwIUf8Ib9RT0FSB1IZfi69vxLoF+9tMj5mWCx0bEBxk8EQr43aM6A0Knl8AAASxyzJTa+QxDGL7wuQXomFxvS8ZhGcxwkMM/FAZOq1NgyAOAEh8mPrqlsqKti319vonIr4n8H9FPfb9I0JRO6vb8sQvcS5DkyssJT+Y/wRzSgvA695kfOlsR4YdQifYapBjbGkTtxamadLaI51ynuqpnlwypDnXt1XAAJ2BO2uFM64sSK60LLPduze1YU1Vao/Uf5ZkJsvE8CKF3R+32j/qulou7IahKGlfw/DSVvB2EO5xsYbtqZBApNtzGObD87w6bpF+UX8Yr73VqlJdF9MhwVaRjDH2R2QmQ6doHO8WEiSOGy/ld3JVeS0sRrCCXJ4O+A8NYtz7mdz//e/Mi0J9tdIMfRPCeQC4jWjfSu6yWhEDWznErk0n97gTPMygYWegKWEGf9yDOc5eMnfXpmYBbUNl0gkb6XrUHshObXxwMYlkxMtnzfi4kAaICO/5i7nTZ66igR/zdxwEjwFYckUpi5YtpPCgfUsQzVB78rhmS6itz5UUKIetFLU+6CXyQRXor57Y/9/6klB4uWsddqikt+TDfgrnATs/V1CYs4BcJPhwXMSKn2a87GCf750vmx/pP8PRgIHsz7hDj+aAzZDL5xQ+DVmb5Imqh/dyi+NzsuM4dXOK0z+L7vWMee9CeGnCd0sKBkB6tdqxmhw25lzfmxWayAdHPpeh6iRn8s2zpTohrq42DsRlxWg1MV43vPYFROQ2zVLi7ueQJGlGG3UMcunrB+x19BdbKxO/69MLpGSEQnzmJjNbUja/C0u9GmxsV2Tv/NSl6mG4vZ3MKCUyuq1oTkQRyhOeqQMMGUSbu3lnT+90RLc1pfju0ZxxqICouP5a213dqqYtxvVpWncs9x++xOxByyrKvcnBAAAB6kEAVSbd0moQWyZTAhZ/DCUlgb8Df6+fQl7X1z3NphDV6Wovbn4b/pGQM69E+b3iSSzjYyIAAAMBuIbV7PcNJAXiMKSMr7c1xHYu4jAjTfR7xNSZFEels59s4wQK6mlmnu0f/Ck2cFClMHptHsaKueq2RdlaqXfCYWYwurGPquwkGumS3Grmf7XZfWIls3bzhB3JoNyp6Eas7dm+AMPmd4Uu77ygDnHnarrUjrghTlBeMCchod3un/LQMn0SLqTjgV3uZF5rBGqi78kO3ovBtO9oqthpMRs/nEBI5q1tznhv/2UZTHAIoHlhtcKzGUBhC6dr+k/uvj2lmmPzyudV99M3jBDwV09oIE8EYz3O2FTrmcKgmOnDjxlH7P8D3Ow7ygrJu+vFj771bY01s/qK+1XX97nb0Brb76rHPpaohoxN7lmNoyz0m6/Z8uAfXVaUOpziz6VR2HCcYvTmmTuWM925IrJLzbfped0dDEOZHg3eoB/T7MfT4WADiW/Y1dFQbI8KPMZ5cyaDKCtYGFNvf9o9XzS1aaTUgf6sF6mj7pm1Zk6RLYuwCNFi49p7swXr1pUm28I4K4QBa27o4PBjcT9sNoCEwflcejcGxrbaYjAN13uoxQ2P3d7pJa3TQNj3gxyasR6/TyqHgrUAAATqQQB/pt3SahBbJlMCFn8MfvRed/uZwJg3RN6u6Qg2oO0elEKOKalhXd5LRKkA4Q0RV/SGmXe1DNgqaFVWLrXRN0pAu9IFk2p51O8M88mTiF1UBv5qp+EO6yjYEhggDPoAAAMAAcRrbTSn8WUJFVxmY8g/6AO/mT6naqR+HstsGYyKelScGJ7HdcPbWvxkwpKxYt2TYTFIBaq4ygbH58gPTeU/4I8yvtq50nXtTSduQYrlQCV8ATP6CiHdLYaXqfJ8BPUHCu2XeLrjeCtE5e35v5/mzmS00WCbqgHee1/c+/OflxbLRB43PWSF/hg1OwHtpx+wkEeUtK4PnMb2X1A2YfW3hS6OhjfLWL0V4Mdl7awhSDktKGwZcLG3nN/a6ZgvA+4DNNHwJp1++o3rjOqt/az/jP70pbGMy5xvjzP3FlpGSuqbzsL6fOs/w8x7Vz+CF1Q3X1kTwQg0cyz4yfP8zwCndLG/lLygLbqoghUoL/t3qnZj+lma6uvmZ5MP7UHF55IfcrPJicxKefjIYYAbdTBcBb5AQ/qUsUHdjgyAZjVTnd///FCp7n+ZtLu6F4m36ai7zsJEtd5k1yVfMb8/31mskWdzwj3zEJgegwexOs0azU29Cz6M6dxDeVAiGnAv9Gj38lxc6PPZZjj99OavNvHLDTu4LJ7Pu7t6G6527ZibpdV5CiwMvmEWc7kBJPsffqDCb2s1qd4/6cCNlMZZlKdK2p80Aq3BOiMi/irOY4Tm702MDd45PVxrC1O12XxVTiBSJaPfHXzYyRbeHH1IS0HD1u2MM9qFZctjpEu0cIShjo2HY1kAye2kX4hs8dsPOW8vtz5Y/YLe0DJg3308Z6d/8Z35kfkXZILvLYi9yl/bUmNqUq6bbJuKvPY0HIZHE4F/wG0I4rNZiYqv9+E6pwZQWVSzDFyL2ruX2BXQTlnqVuRv6nk3rz+5T3dWC7BAoersJ/k0xg/IhdnefoGhgKvfDTT2VzDzzEBa2sdVA4Ul4Xq4P7GAkxo3y6cYPIWugBU5g280xgX7EbBkZx2OVcHiLcFyIw+/PdY4TTlg8hONF0KI8Z/Rnm65cUwWkGsHu99ibdoFxoPCVi2EB0bEhpNZQyDyD9od4dL4JY2eMPwHLK7ACkUiaCAV1CeuQz3RPAp/T9lN2enxBRi1IUdvFgPpJMInYKtxopiHIL1QnODD8U0rIz1pdrSNVdmU1rmvM3zQwKuvOl/g+nqLvXIQ9bfPUT6e8HHKzg5lTEAfhAWkgPxagAK2TQaA4smeB9sAPeRX2YJWrteqm5SfwsiARQO1OF4BjykI8vAHMBHTAQjay9sjLGYHSwhbT8Ma3rqG8xXWWWY4SV4ZMZl5EPO6qwqWQbPzqIG7ghuBH00vBiBINI4sEh03zaCuM9XGwfW2QNWVYa24pnAQZtKWMWf0m0R2LzOMd4oji9U0PWy4Cj65isef5pO06O7hs7kTgAt1TyRbOqoXukiQnbD+lqsn/+saV4qYSzmhmWWtcbAALQyDYGQK9qj8xFhOnAJW2DQTMl1/Whd7wgext32LLrxUBSLFMcWqpKWamfyzTIYSfwy5SXNn8xBtW1gydifr2Snc5DP+DqUmmZ1DyDhfs3K9pzc/KLE/G4pjvJLgI8KWDGWZCVEkBKAu6HJL9P8Fri8LN3o3uLyV7HyLwQAAAiRBAC0xt3SahBbJlMCFnw0XeeCeM0z8WCxUP7prmdmcT9/5gKP6j4h2eCGU3SfP5WNObD7PZe0Isy+cK/XYFrr4HdB29UDKumrUH0OK2BPmQNtup7R1H2iDdKkaNcHnlqCRyJkEwwus2Dk6J149QxZxh2/QY2eYIPWApe0V94or4b89QAABIzU2OsdimjCihVPEwvstcChS6/HdTOvzf9CBJVDrvSuSJiEuUrHpQSw5q2zAFEdeyl4xG2x9Jw0F2GosRTIyDfKCTb+9n30ueD5IodWRgZTUBbpCsfDTceeRcT3qCl13TJWvSETQ75D/pYq3ZdDg/rCgTdf7KO5DZn2yCD6p+WwasSMGaoj7uRRYOSd776BNCdH0imaZSe3vOMb9BeLcyNHBJ9O3KICxZuyIlFtCZODbrp2yjoohWKigqxXpK6eeZRl/PuJfWYr60LzWiSLL7F/JASdxDbIjrwVYU/47rSqC0rWH0PmWKLvAQYpXCtgFLzARJRHQJ7lOZ5Sp42rNzuPP9ML6s7v7BJ5T7+akAMs5V1jOqbrhCzLRYiLBeDX1NCDlxPaxh2qt7f3AcHdZtaBiDjcuPs0Bzky9E5db/nyfe1NRYONMMxZpIrP8XUDU4e2KVHVPvy4RZ5XRAIbqR/TCbPLB2m6kXhFjOcOWumSz/x/EwhSSJLLEtKIMFj12DBoKkvRSuylHmCD9YhPkdi42BpkMeAf4nTPLJBLBgQAAAa9BADfRt3SahBbJlMCFnwxx8wDMEv/bsbltFDuImMgx4e1b8wlGUyR1wAAAnyGZAxfvDdIQNz9uW13syo83zfr9rnaFeexOQPS45AQxLr//o6wf4/kxNNgZV/HfbWv46iuMCZNcSSuIsi2A0mkTNjf+6DGrZQyMG/nT4MqESS5ptrDRmxcpLTtV5EZq417HVt6KycdWo3eDZ9s7wBCtc3ik618fPhu/tTaf+OdVQOLEbk9jJ82a4z/M97daJtjgnHSHI+FrZwSXVl7JUfFiQdUCHKGyTEeaS7F7NKfZmlNv9hqzl1AtqOZcvB2J33jG/PhfPzboftBThIWHRewVxgrUJiEex006FYYbnjP3sSEZK4C2hFOQP5u57magdfI647LFTP4bPzzkcVS0QEfFGcdszF63PwqNlizta6AFI86rmnjY/PGT/7LPMtH439qcL4rIGGsmIA8v/V7QM/B80vUuFU9i9VnNYWND5dDwuX0FztefVsNo+gK/KF7CAy225lKcCHmvT7TSsV7HAPb6YCvAbNr5PWQ9dyqu31DJge+GWp6odF7f4iUKjiFrWIyUwQAAAY1BABCcbd0moQWyZTAhR/8JS+jE8znmkUyctKvg0RuSXcsXgAAlxHQ19/Bc1gl20oLYJaAChucIsU9zZOoVSJ2J1zYFQdMLlI/nnfexicxbG9xeomGe1Em7PEslKYCazueqaaqcQwlRVtCOLAacx8t7ohnngOMEXCR2dNT5Gh2L/vUmRvXq8COJPCmP8hAcEd5IwfVG2CJ6XKqAC1qdwNpRVTQVNsEgCTYmf8QksyWvk/e2cff+5Sqio4ZFHrZW2lQpQg8eCvm+/usS1iFOcaUiqn3PhDz2WQjQ+C2yGCzA7aJz21MF7STNh8X8pCk7OriuHbDV0nE8VTeonVJLhg61n+6asF695n6RBhnzQ+jV8GI3D7JcoveEoonEe21d4eBVqJ6Qog8aKdsz6jdJbj05nnAJopPcVySGhs2mXjYdRgOsQpoabY1OL6B1WMx4Z7q3aTZT65/O0ofJr9lTc6u8EhwjDmuDoiFFlVeS4gCGSp950gX2WFHp4FSclNuqFo/9PSh/qTWKd4Dh8Qz3AAAA6EEAE0Rt3SahBbJlMCFH/wWFvjcMO9MwoATMekOkf/85elk6Tj9p9h9q3Tf3/o6wseFpxHx1bT9il8tM6xRibaotVcSGdDQpOYuN/IW+bcQHseZaroZ685h1fTvaE7AhTpZosBZ3T7WS+qCpLzKSlymft0iIs3SNrQ/09u/lNLY2Q5ie0RDW6WyvUWXj5zJQk/2IYqSNsnEgmi3TTRJv5SebUq4LtV2HS9HawyF14NSjJlzyssccQBJ/9+nvQy5BCpQYLHGlRVNV5bBEdD5i9mAXBqsOGq4uGvavIAhtDbZjnvi355Qqy0EAAAI8QZ+VRRUsKP8iNPLtwvSJkwZqRqJs8rXzuNP6I1+QvYFNHbiPSYj+/guCgczRlGaTXdncF8V485aGkvdseBOd/laCLFdb8Q+ZSGI+1LzApW4NuzSIWCSVGuH2TvHPSRBB5HWnNJHlHT1+ON+xwtzvJTGJVRCJ/SKYLg3V0/K8JU6AJvvCEqA588gkQlkgUfQLU0FtpVpl7vHuzWaUy5M05+C9BJQ/kK9klWyquviUgqgN4/M4lFI9Y2C4xAqdgkMZnrllFGwLkUpBDYN7LA3w4Pbh8IQYjzjEZThE6dH1BZprMSaKOTI9PKX3ux6Q+bg+WBP0gK0fyNrvXhiHpQDuY3LghTKgF5mYw5k0jZBAvZDvwg1KZV/u3K1y3aALu14inwYAhKwZvpyf/yMRwLF1NrHc60KF9ni0dg1EtvseGTrbxup6CGWBXZ8RDlj3gpCVok0OdMMnDfGmy6umgFnjm9tdza05+lZ7jkpUySgxFtE3ANPwOra+ixCqK04/gb/957/69KXBT2A4K8gejKSojdGInqVD8cLmF0f1WTtStIVRNa1s2o0ksyRPJhUd9cAnpiOz0GIvD3Dr8thRAfzjF8cS8TR4BuMwuIy2zTFhd219Bx8XDd04jldTy+4Ljgx3wVlH3PebmWcjZuoNj7w1yjgKW7FH1PQMu0tvgYDjQqsntDbIyAl5v9B4STQgGkYmaMtUqgNRVDf/RzicLORpyb293CWvCDw6Lvfgpwmaib036ZXreZo+oiTIFp8AAAGcQQCqn5VFFSwo/zytvj/SG2CJcmmX0WdZQU9oPRyaoEH6ig6keq4IAt0cw8QzRP/BYZ8m0IwkvLvjJNwmO6s5YJorp+YeQd2xuaPXDWjo70Z256noGj5D03+3JpUavHUEao4NtKJ/wSQ1gJpVf89Y6IL3TnA/FEhqUKiVYI8DmjAbhg2QQ0cVp74b/BmCm1b39LuwCYJUcbDr6Jqy8uXEqovhsLt4B30qbGRMFH0w3FE/ecdWaiLtIAfbaK2gR/UnCpJB3Bjf0GaHE+xYlpOmkAZewptUnZA12wXd4bQnBmeLHxokOEnSGgqJQL4iQ5OCRc8qBml7ZVWCAhuEZnXXtcSc+dCfKFS0/naoTyzYh9wVxHiBBzhEwVxDegXJlbPX7m7z7PLODBg8xKYpBe279NBKasy6HApFW71AJltE9SOlE1MpVzX9g2eDpAFPXaVeP5zmbBYBXXKXf5hVOGxgPE7HaXXXHe9WT2Q4JatkPAUQa7A+MN1lPrRJAuebCrwB1TTtt3wim3HcRggdE0JNfX6n2aG4PfwV3CPyuAAAARBBAFUn5VFFSwo/Pg3hb9zNkMI5a6XhKCtndv4uFQ9e3FpsUmBPxEmujIwdenkPamKaoHpz8hwOwXnAUqAWRgB6tIMGYIGN5YyjMlQ2IuPg1Zcg39flZknTlOi4aLLrkwlGqm/ta6uGo52jN+17FXdkBVSjSklwG1F+nKzWMVcLU71ZEemCT6h+DOpylFC4hLbdlPjcfzx0hHigBVY3S+fxT5aSFBZGRj6RIod4Kssr+kuN+h8h8U+jpz6IaMi8oyRyxkM82xplPJwbTOhio0JPE+Nxahfh9ndY4lT+dHheF3NSExR9PSIRwo7PJhpP42svyf2ihsB+uV4qGLn4QxlFXSmnEalbID2VjUHYpU6GmAAAAfBBAH+n5VFFSwo/UjLSRdu8fvCJSFETfyNvkPaQswpO2+2xH9uvbK0zu5WpalakAiLy6Gxm6YNEYuTb1CANGayhdD5EM2FEmGgHgeMNdWQYlgMo6hkPsoR+DMe94NmdeIrNFhn8YFhoNyvRvZTSSDHlCJxvkBdljBK6YW5VitBtUOXLhg9z9gpbFO3sRGDc8TY8W8YYLkP+CwbYan34PQ4/ETFnkAPgDd8p7d+45KH4Rvh7prZWWCGeJXnDdjuIwk8doPih8kdmBo4dPAFJhCsvBvAUmXTDhOxI2Mp4p0mhxXlKlNTNjqdpLTzRnzoCNrzOOjE/w/nlc6F1ovYbCkguWH5V71wA2hlRvlBswDyd6jSZB+eRvmhQofITRaimtE4U49S5lpmEFyjhCDER3pupUeC+5bfoOeCK0B3j9zHuWofY88W3t/naFcRn9CELSWSJ5hUY6J09jukXUopZSxA/icejdxPQTR8y/D0DnppSmhMIV3olPnGe+hIwog7qqt9H0kH0N0p0/kdW7rsOiuoAQNB/o64U7A0RpeLBFFxNiF/BcsqLO33Fr/mr7UZO6ig+gbBZy7BGM9e0mPg0zgr3lhXHZzyC300NRWjKGHGRe/mWY+j3cYGKg4dP8HJOucp/jarbGmyJ2/coatIq48RwAAAA90EALTH5VFFSwo/YlsuhxqFggEDoYd7AHZtXOL53aLCAY8jBr0LjK1iMnyJm0vtGzyrymwWKZIPDWz1LCpvte/qrF7c0aQnUQomphoCW034ciDs8pUHOUFBFWnAB1KlEemBJWLI8NjxemQyCzHlZ7TVNSVM1rHHxoJg7UmST7/sHK5mD+cl4GYp4ih33nm0NQbuQVBgVAbqGnms/XiZG/ULCMec7gFc6vLGVSET18aN77kEULCibCERS4EdSUzJYPTJIc6LJtns2+7B7p7cm1uTM2umMj/PlZS4DWFZkEBgaDARAroCYHxnJzRbyrzjlCnZ9d92FuMAAAADMQQA30flUUVLCj4eDkw3xf2S0Z4DPVeql2FpO1Ya38CuDN+zPJtt5vOyvW1VxH3RGAlNNPSfTAYdyFADLs7yyYLkaHeyiZpnwHQTYNgGm2gW1MRgrlXIpTQbjExygkYLCHlSuCJiiL/CDYjm9m7gMZ37dSys1pFQy3H9Q8Dbewig1DVdmt8fhhX50MhgiYKmmZ5JIITCaAIwf4YU18ANlttv6BOtMUgpV8i5kF8iBesx9Zbgf2UrzASyAOgQCs6v+uyIhhDTA3d8X9dgwAAAA20EAEJx+VRRUsKP/XtblNeDRfXikSN0Tojr0k6s/LcFszFzvZ4hEe7L4+wY9P79qe3qcl5xG/yIIE5SimAE7s29UnHSB82zuJz1zgTUoBoVcewhZzWgV51R6s7vqjbZOr/cqy+nLv5NHXgKgYaVrvYH1RKCNiKAktKlr7YGHvqnEjZ1w3+P0l0ldf9EoXsRdRxmlAqUX2fGOPhalP+2n9KJqWOv7+4RFCRShvT42cQ4tV9jruOlXeN3P5R1TAj7n5WQe7g6zf2A0988U1QWd+WeMe+vwBlVBbnsf+AAAAJ1BABNEflUUVLCj/yj2vMRxpqADmLW9JRHaF+zlv5Nwq9dVa8sT3uZMWKD8yeZGOqOq4f4uXTQWMnny4tBA5HeSM2INFlAEITtHY0tY6JMx5GCj9CIlMPDastjadO0YS/1z/vwFtHIR3tB6slCM/fvVf5VE68Vit9gouFZMIy6g1H62e8A+46aI76Iyd3+qLsybY/m2uR6waO5TRXOgAAACEwGftmpCzx56R0xt5hChyGmokDGzWbsreoI+M75Rn/P917JMzUfMzd3MQ0BM7PI2cQUBnut7n3bW/JWDgNMXTW5XL8rvPnu33YyMa8Yc3647XuEgtoReuhchcV670yhXZDhlL4GDH6bp6B+R7iqrfKfp9KXpySlfsjBdZEjeIMBy3eGnZO0cgIXIX7XcpGZrIeDRlkvsk2NSKHqvqgImnvdZ4AJWtssT3hAWMOBAaVSdsJPH7663/b7BKXI5xrHXWPl2WQ3Z1g4YU9IFN+C7qTAaMsb9w9MLaZs8TIHckL+p8j+6r5JPapB3QargPg8g8n2aS9F5qx7MM/8kyWRwhVQAvcqHBmefyLY5soAVlnig+tQ8fmY7RRTjbLdTuJXeK3E8QUgCVdQyn+HL80mn/jcYeP0ZNZrKrUxmqyL8VyEuF49Oh+RIPLsRd8mCDH8g1dkeYC5kLouZJtHPS7p2PUg8hJCQ3M1t49vhQXpNZGnY2Hx7tLh7t2W0kwmG8AQ6qsFIe7yDhv+38a/qfd8F5pzWret7hAsb7xXC6rmaeuvjDnYq6aPcMvSfWHAewnpkUR5jCs4M6TpRnZ12Vyhmk4ayUY0ZLTTG40xMSLzg3DpCokB9BUL5oiPSlUyJtt0anZ34R4jXIWrBuuzlrb0OWED446aCaupuhdnrSSdlNHEapyxSldcXOxU3wRAC5aRdJPtliQAAARoBAKqftmpCzz893FxIsYoK47F569O7lELt2nv4DCYEfWfcZf8BTS/DglReNDM8nQUN7qgnBwHDIlIHq6jbpjf/Oe+vdL/CId4jhOYM4pz2uzrAiIgXAVR/Fu8PLpJ+hXXg1UcGvQP41Rsve4Rd9nbQ1O0V1Pvnp/VX1BCAT6DqdmwXO+WpUb0AO+KXsnK6HxIKwqoWWAeuExu5oWMlRsbjzagGJgv0ngHRhjlYnQ4MWFPoj4rdz1FdtsiU+h8QYSRj+w+T+Sg1GBRvqOCfWKAaeCaikeEzu0iriX09Ta+pasGkZ69KOwgtWaF7LJjg7UQM2QSJ7Z/99Tzrt52YPY4ODBqXDOFohllKyCRw3e1m2b1kgBXKfokoE+UAAADvAQBVJ+2akLP/QHWedytpGCAUBWIGH/6xh60NFl0eMxICyiuct+a+cxzsAYQHGbQAhb0FdGAdrZ5jhRK0BAyqWfH5ArG4RAzfAMIm1X5p+9hA2RBL2Lbal3x8boIPt8v5TnQ/TxodwJDrNA4eSCyVt1YpGhvKGN++xWXsQmcPtbk2KIBgr2ey2p7GIJOT9ILdOeg9RPqW8SKRqxjSP3mWhwCDJWejGfzalIcft6sOSjoJ8x9LmSL1Hx2ibR/1jvLUzBlfwaAsB3AuKNXVSqT05lozJVdujw4Ur2BJ+Tq1uAuQr10frgV+++OIOubiQYEAAAI4AQB/p+2akLP/Qs/8ClPGmgQ9E32qjHGNqDsrYi/BT9W27BafbvrC4uQuVFNRn61Lqxv1zoj5Z+DVag5I47M7H0AA4lrfdu5c9XM/sMPC7kB7jTIAnBF+uRBSIpWY8EPnJT+CGDbpwFJ2Mkax170bE//azfsvwMI5t6X/N3xBroO0VQpQWQGMyWv+RJbmR68Z7732QD369HllHoxsWHkAxvE0QLctjGLkQh3WvIGlauadWzQM7jfmqfBZBMZ+seaEenwHhCfQgH2svJeqshuaQf6ftqKUfrFoFYvbnFm/jmg+pOXlcTQ2SQ45la95lUGYrWmg3RcnwnOU2U/G3AscfbvXxKVuLthW3ezDSIHqBWTVODz2jSP4rTh0Hgdrj3EF6qW2IR183OcQHgmc1WcnAe2hEOgcPddcIstwLzpgGuWbFPLUPiPBZfdLG9cX2hGyhS+Mkz7gd47hcK0bZuEyEQOXxiKkYqJuBS5gHxaUSJWx87o4SxNURxehAclmwg1vhDBZpXhwcRAw/SiImW0tkGlormqJTS5RODtHf596dJmfiRw5zCOJuma7Je9BMeO263Ass8Ynp3hwz/JuHrvG0TupQEAyFat+EXNvN6JB2m9UAhUxX0CfgrYHTzFNKGZGkOfvwdOjCmudqGug+83Xbwzpn0B2w22zPQ6HE8x3pTZCiwzoNVCace/Oe5YAzpaINuvWl/Y3/5MjL0+jX291DG35aolNAeMx8kbbvGuobse/dhzpFfW6QQAAANcBAC0x+2akLP9Frf0H7n42tO1b1vmXTSekZ3bT/bCUoP5ofTzhcMLZjJqQP6P3vjoSPW/R83WxTXJxkV2/0S8pXyEfd6QOgikc4e6OGgll+yB0fw3Ck419cwlB7MjRahxu+qWKoIdxglhA9ZZxSZA+p/40zHzvZds+s/9aPJqTRjmhp0hz1BDk953K7aT+GImalypq5OQEO1G/TE0Q+uOcQDz6fFvDqIyklV/zwHANGA0LFc8bLOTKBVP5KCWSEa52T4IYInhinzcuIJJ9iU1DtEe7z9P+CQAAAKQBADfR+2akLP+MERRs3cv6gXrcDXiW+TSDpm9cnRi8c42jrfYg7qc6KS+8CADFR9R+CG1bXI1xobr1nwNw1ffH6Nr7ydG/a66uhIK9XpZHYm5HLcUkxUuhGEuYtHeeq1tT6yNWx4HntB11B+Cy8/cJW836RGyELG0bpDFPIGJuVHVbBQ4d6HMWFvFob/JotnfRy06jIS4QsIHpu33kt3wOPdv+QQAAAJgBABCcftmpCz9CthdqPvKJ8EfmXqkJ5Zthc3zWDQ05jG0F+eOK7O/y9QE0HKnFg1SNCCDWG5o9sekOOcn+fcCAwRORYdwiPUTqj8o3Xpxr49B9r5+Nv0rbVzAkSEaFo3Qk/uWQ/UE5JkY41ysAujQL9ZE7d1cvzn1ZR/OV7sTjPs5BzE60AZp9s+z6bTStTlPuyMvSHa5lgQAAAGoBABNEftmpCz8o0NwAID1TTbkarIx2RCQF7N+uVLWwxG2VnPxjEf3jAwgNMCCrfEl+0yhJRda8MblB2Qg9b4XUmYuL18ZMyhtgph+vQgXj9/oE7KKMk3+4+V6b81b8bhpIHdnzkdV9oOvvAAAEQm1vb3YAAABsbXZoZAAAAAAAAAAAAAAAAAAAA+gAAAMgAAEAAAEAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAANtdHJhawAAAFx0a2hkAAAAAwAAAAAAAAAAAAAAAQAAAAAAAAMgAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAQAAAAAVIAAACBAAAAAAAJGVkdHMAAAAcZWxzdAAAAAAAAAABAAADIAAABAAAAQAAAAAC5W1kaWEAAAAgbWRoZAAAAAAAAAAAAAAAAAAAPAAAADAAVcQAAAAAAC1oZGxyAAAAAAAAAAB2aWRlAAAAAAAAAAAAAAAAVmlkZW9IYW5kbGVyAAAAApBtaW5mAAAAFHZtaGQAAAABAAAAAAAAAAAAAAAkZGluZgAAABxkcmVmAAAAAAAAAAEAAAAMdXJsIAAAAAEAAAJQc3RibAAAALBzdHNkAAAAAAAAAAEAAACgYXZjMQAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAVIAgQASAAAAEgAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABj//wAAADZhdmNDAWQAH//hABpnZAAfrNlAVQQ+WeEAAAMAAQAAAwA8DxgxlgEABWjr7LIs/fj4AAAAABRidHJ0AAAAAAAPoAAACypwAAAAGHN0dHMAAAAAAAAAAQAAABgAAAIAAAAAFHN0c3MAAAAAAAAAAQAAAAEAAADIY3R0cwAAAAAAAAAXAAAAAQAABAAAAAABAAAKAAAAAAEAAAQAAAAAAQAAAAAAAAABAAACAAAAAAEAAAoAAAAAAQAABAAAAAABAAAAAAAAAAEAAAIAAAAAAQAACgAAAAABAAAEAAAAAAEAAAAAAAAAAQAAAgAAAAABAAAKAAAAAAEAAAQAAAAAAQAAAAAAAAABAAACAAAAAAEAAAoAAAAAAQAABAAAAAABAAAAAAAAAAEAAAIAAAAAAQAACAAAAAACAAACAAAAABxzdHNjAAAAAAAAAAEAAAABAAAAGAAAAAEAAAB0c3RzegAAAAAAAAAAAAAAGAAAPo8AAAWgAAACsAAAAccAAAH2AAALEgAABEkAAAJeAAACxwAAErsAAAi/AAAERAAABo8AABoDAAAO6gAACJIAAAhtAAAYZgAADpEAAAjXAAAINgAAE1sAAAozAAAI8QAAABRzdGNvAAAAAAAAAAEAAAAwAAAAYXVkdGEAAABZbWV0YQAAAAAAAAAhaGRscgAAAAAAAAAAbWRpcmFwcGwAAAAAAAAAAAAAAAAsaWxzdAAAACSpdG9vAAAAHGRhdGEAAAABAAAAAExhdmY2MC4zLjEwMA==\" type=\"video/mp4\">\n",
" Your browser does not support the video tag.\n",
" </video>"
],
"text/plain": [
"<IPython.core.display.Video object>"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from IPython.display import Video\n",
"\n",
"Video(out_path, embed=True)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "7becfbd0-4cb2-41ee-a340-470011796add",
"metadata": {},
"source": [
"## Interactive inference\n",
"[back to top ⬆️](#Table-of-contents:)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "2832a501-a8cb-4a44-a249-846f8524e3d6",
"metadata": {},
"outputs": [],
"source": [
"def generate(\n",
" img,\n",
" pose_vid,\n",
" seed,\n",
" guidance_scale,\n",
" num_inference_steps,\n",
" _=gr.Progress(track_tqdm=True),\n",
"):\n",
" generator = torch.Generator().manual_seed(seed)\n",
" pose_list = read_frames(pose_vid)[:VIDEO_LENGTH]\n",
" video = pipe(\n",
" img,\n",
" pose_list,\n",
" width=WIDTH,\n",
" height=HEIGHT,\n",
" video_length=VIDEO_LENGTH,\n",
" generator=generator,\n",
" guidance_scale=guidance_scale,\n",
" num_inference_steps=num_inference_steps,\n",
" )\n",
" new_h, new_w = video.shape[-2:]\n",
" pose_transform = transforms.Compose([transforms.Resize((new_h, new_w)), transforms.ToTensor()])\n",
" pose_tensor_list = []\n",
" for pose_image_pil in pose_list:\n",
" pose_tensor_list.append(pose_transform(pose_image_pil))\n",
"\n",
" ref_image_tensor = pose_transform(img) # (c, h, w)\n",
" ref_image_tensor = ref_image_tensor.unsqueeze(1).unsqueeze(0) # (1, c, 1, h, w)\n",
" ref_image_tensor = repeat(ref_image_tensor, \"b c f h w -> b c (repeat f) h w\", repeat=VIDEO_LENGTH)\n",
" pose_tensor = torch.stack(pose_tensor_list, dim=0) # (f, c, h, w)\n",
" pose_tensor = pose_tensor.transpose(0, 1)\n",
" pose_tensor = pose_tensor.unsqueeze(0)\n",
" video = torch.cat([ref_image_tensor, pose_tensor, video], dim=0)\n",
"\n",
" save_dir = Path(\"./output/gradio\")\n",
" save_dir.mkdir(parents=True, exist_ok=True)\n",
" date_str = datetime.now().strftime(\"%Y%m%d\")\n",
" time_str = datetime.now().strftime(\"%H%M\")\n",
" out_path = save_dir / f\"{date_str}T{time_str}.mp4\"\n",
" save_videos_grid(\n",
" video,\n",
" str(out_path),\n",
" n_rows=3,\n",
" fps=12,\n",
" )\n",
" return out_path\n",
"\n",
"\n",
"demo = gr.Interface(\n",
" generate,\n",
" [\n",
" gr.Image(label=\"Reference Image\", type=\"pil\"),\n",
" gr.Video(label=\"Pose video\"),\n",
" gr.Slider(\n",
" label=\"Seed\",\n",
" value=42,\n",
" minimum=np.iinfo(np.int32).min,\n",
" maximum=np.iinfo(np.int32).max,\n",
" ),\n",
" gr.Slider(label=\"Guidance scale\", value=3.5, minimum=1.1, maximum=10),\n",
" gr.Slider(label=\"Number of inference steps\", value=30, minimum=15, maximum=100),\n",
" ],\n",
" \"video\",\n",
" examples=[\n",
" [\n",
" \"Moore-AnimateAnyone/configs/inference/ref_images/anyone-2.png\",\n",
" \"Moore-AnimateAnyone/configs/inference/pose_videos/anyone-video-2_kps.mp4\",\n",
" ],\n",
" [\n",
" \"Moore-AnimateAnyone/configs/inference/ref_images/anyone-10.png\",\n",
" \"Moore-AnimateAnyone/configs/inference/pose_videos/anyone-video-1_kps.mp4\",\n",
" ],\n",
" [\n",
" \"Moore-AnimateAnyone/configs/inference/ref_images/anyone-11.png\",\n",
" \"Moore-AnimateAnyone/configs/inference/pose_videos/anyone-video-1_kps.mp4\",\n",
" ],\n",
" [\n",
" \"Moore-AnimateAnyone/configs/inference/ref_images/anyone-3.png\",\n",
" \"Moore-AnimateAnyone/configs/inference/pose_videos/anyone-video-2_kps.mp4\",\n",
" ],\n",
" [\n",
" \"Moore-AnimateAnyone/configs/inference/ref_images/anyone-5.png\",\n",
" \"Moore-AnimateAnyone/configs/inference/pose_videos/anyone-video-2_kps.mp4\",\n",
" ],\n",
" ],\n",
" allow_flagging=\"never\",\n",
")\n",
"try:\n",
" demo.queue().launch(debug=True)\n",
"except Exception:\n",
" demo.queue().launch(debug=True, share=True)\n",
"# if you are launching remotely, specify server_name and server_port\n",
"# demo.launch(server_name='your server name', server_port='server port in int')\n",
"# Read more in the docs: https://gradio.app/docs/\""
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.5"
},
"openvino_notebooks": {
"imageUrl": "https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/e11be946-dfa4-4f1d-a8b8-764213de9f1c",
"tags": {
"categories": [
"Model Demos",
"AI Trends"
],
"libraries": [],
"other": [],
"tasks": [
"Image-to-Video"
]
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|