File size: 5,099 Bytes
db5855f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# SegmentationModel implementation based on
# https://github.com/openvinotoolkit/open_model_zoo/tree/master/demos/common/python/models
import sys

import cv2
import numpy as np
from os import PathLike
from openvino.runtime import PartialShape
import logging

# Fetch `notebook_utils` module
import requests

r = requests.get(
    url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py",
)
open("notebook_utils.py", "w").write(r.text)
from notebook_utils import segmentation_map_to_overlay


def sigmoid(x):
    return np.exp(-np.logaddexp(0, -x))


class Model:
    def __init__(self, ie, model_path, input_transform=None):
        self.logger = logging.getLogger()
        self.logger.info("Reading model from IR...")
        self.net = ie.read_model(model_path)
        self.set_batch_size(1)
        self.input_transform = input_transform

    def preprocess(self, inputs):
        meta = {}
        return inputs, meta

    def postprocess(self, outputs, meta):
        return outputs

    def set_batch_size(self, batch):
        shapes = {}
        for input_layer in self.net.inputs:
            new_shape = input_layer.partial_shape
            new_shape[0] = 1
            shapes.update({input_layer: new_shape})
        self.net.reshape(shapes)


class SegmentationModel(Model):
    def __init__(

        self,

        ie,

        model_path: PathLike,

        colormap: np.ndarray = None,

        resize_shape=None,

        sigmoid=False,

        argmax=False,

        rgb=False,

        rotate_and_flip=False,

    ):
        """

        Segmentation Model for use with Async Pipeline.



        :param model_path: path to IR model .xml file

        :param colormap: array of shape (num_classes, 3) where colormap[i] contains the RGB color

            values for class i. Optional for binary segmentation, required for multiclass

        :param resize_shape: if specified, reshape the model to this shape

        :param sigmoid: if True, apply sigmoid to model result

        :param argmax: if True, apply argmax to model result

        :param rgb: set to True if the model expects RGB images as input

        """
        super().__init__(ie, model_path)

        self.sigmoid = sigmoid
        self.argmax = argmax
        self.rgb = rgb
        self.rotate_and_flip = rotate_and_flip

        self.net = ie.read_model(model_path)
        self.input_layer = self.net.input(0)
        self.output_layer = self.net.output(0)
        if resize_shape is not None:
            self.net.reshape({self.input_layer: PartialShape(resize_shape)})
        self.image_height, self.image_width = (
            self.input_layer.shape[2],
            self.input_layer.shape[3],
        )

        if colormap is None and self.output_layer.shape[1] == 1:
            self.colormap = np.array([[0, 0, 0], [0, 0, 255]])
        else:
            self.colormap = colormap
        if self.colormap is None:
            raise ValueError("Please provide a colormap for multiclass segmentation")

    def preprocess(self, inputs):
        """

        Resize the image to network input dimensions and transpose to

        network input shape with N,C,H,W layout.



        Images are expected to have dtype np.uint8 and shape (H,W,3) or (H,W)

        """
        meta = {}
        image = inputs[self.input_layer]
        meta["frame"] = image
        if image.shape[:2] != (self.image_height, self.image_width):
            image = cv2.resize(image, (self.image_width, self.image_height))
        if len(image.shape) == 3:
            input_image = np.expand_dims(np.transpose(image, (2, 0, 1)), 0)
        else:
            input_image = np.expand_dims(np.expand_dims(image, 0), 0)
        return {0: input_image}, meta

    def postprocess(self, outputs, preprocess_meta, to_rgb=False):
        """

        Convert raw network results into a segmentation map with overlay. Returns

        a BGR image for further processing with OpenCV.

        """
        alpha = 0.4

        if preprocess_meta["frame"].shape[-1] == 3:
            bgr_frame = preprocess_meta["frame"]
            if self.rgb:
                # reverse color channels to convert to BGR
                bgr_frame = bgr_frame[:, :, (2, 1, 0)]
        else:
            # Create BGR image by repeating channels in one-channel image
            bgr_frame = np.repeat(np.expand_dims(preprocess_meta["frame"], -1), 3, 2)
        res = outputs[0].squeeze()

        result_mask_ir = sigmoid(res) if self.sigmoid else res

        if self.argmax:
            result_mask_ir = np.argmax(res, axis=0).astype(np.uint8)
        else:
            result_mask_ir = result_mask_ir.round().astype(np.uint8)
        overlay = segmentation_map_to_overlay(bgr_frame, result_mask_ir, alpha, colormap=self.colormap)
        if self.rotate_and_flip:
            overlay = cv2.flip(cv2.rotate(overlay, rotateCode=cv2.ROTATE_90_CLOCKWISE), flipCode=1)
        return overlay