Spaces:
Runtime error
Runtime error
File size: 87,883 Bytes
db5855f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Asynchronous Inference with OpenVINO™\n",
"This notebook demonstrates how to use the [Async API](https://docs.openvino.ai/2024/openvino-workflow/running-inference/optimize-inference/general-optimizations.html) for asynchronous execution with OpenVINO.\n",
"\n",
"OpenVINO Runtime supports inference in either synchronous or asynchronous mode. The key advantage of the Async API is that when a device is busy with inference, the application can perform other tasks in parallel (for example, populating inputs or scheduling other requests) rather than wait for the current inference to complete first.\n",
"\n",
"\n",
"#### Table of contents:\n",
"\n",
"- [Imports](#Imports)\n",
"- [Prepare model and data processing](#Prepare-model-and-data-processing)\n",
" - [Download test model](#Download-test-model)\n",
" - [Load the model](#Load-the-model)\n",
" - [Create functions for data processing](#Create-functions-for-data-processing)\n",
" - [Get the test video](#Get-the-test-video)\n",
"- [How to improve the throughput of video processing](#How-to-improve-the-throughput-of-video-processing)\n",
" - [Sync Mode (default)](#Sync-Mode-(default))\n",
" - [Test performance in Sync Mode](#Test-performance-in-Sync-Mode)\n",
" - [Async Mode](#Async-Mode)\n",
" - [Test the performance in Async Mode](#Test-the-performance-in-Async-Mode)\n",
" - [Compare the performance](#Compare-the-performance)\n",
"- [`AsyncInferQueue`](#AsyncInferQueue)\n",
" - [Setting Callback](#Setting-Callback)\n",
" - [Test the performance with `AsyncInferQueue`](#Test-the-performance-with-AsyncInferQueue)\n",
"\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Imports\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.3.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.0\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
"Note: you may need to restart the kernel to use updated packages.\n",
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.3.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.0\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"import platform\n",
"\n",
"%pip install -q \"openvino>=2023.1.0\"\n",
"%pip install -q opencv-python\n",
"if platform.system() != \"windows\":\n",
" %pip install -q \"matplotlib>=3.4\"\n",
"else:\n",
" %pip install -q \"matplotlib>=3.4,<3.7\""
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import cv2\n",
"import time\n",
"import numpy as np\n",
"import openvino as ov\n",
"from IPython import display\n",
"import matplotlib.pyplot as plt\n",
"\n",
"# Fetch the notebook utils script from the openvino_notebooks repo\n",
"import requests\n",
"\n",
"r = requests.get(\n",
" url=\"https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py\",\n",
")\n",
"open(\"notebook_utils.py\", \"w\").write(r.text)\n",
"\n",
"import notebook_utils as utils"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prepare model and data processing\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"### Download test model\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"We use a pre-trained model from OpenVINO's [Open Model Zoo](https://docs.openvino.ai/2024/documentation/legacy-features/model-zoo.html) to start the test. In this case, the model will be executed to detect the person in each frame of the video."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"################|| Downloading person-detection-0202 ||################\n",
"\n",
"========== Retrieving model/intel/person-detection-0202/FP16/person-detection-0202.xml from the cache\n",
"\n",
"========== Retrieving model/intel/person-detection-0202/FP16/person-detection-0202.bin from the cache\n",
"\n"
]
}
],
"source": [
"# directory where model will be downloaded\n",
"base_model_dir = \"model\"\n",
"\n",
"# model name as named in Open Model Zoo\n",
"model_name = \"person-detection-0202\"\n",
"precision = \"FP16\"\n",
"model_path = f\"model/intel/{model_name}/{precision}/{model_name}.xml\"\n",
"download_command = f\"omz_downloader \" f\"--name {model_name} \" f\"--precision {precision} \" f\"--output_dir {base_model_dir} \" f\"--cache_dir {base_model_dir}\"\n",
"! $download_command"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Select inference device\n",
"[back to top ⬆️](#Table-of-contents:)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c9c9f01fc0014058909e1d61e7bdd56d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Dropdown(description='Device:', options=('CPU', 'AUTO'), value='CPU')"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import ipywidgets as widgets\n",
"\n",
"core = ov.Core()\n",
"device = widgets.Dropdown(\n",
" options=core.available_devices + [\"AUTO\"],\n",
" value=\"CPU\",\n",
" description=\"Device:\",\n",
" disabled=False,\n",
")\n",
"\n",
"device"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load the model\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# initialize OpenVINO runtime\n",
"core = ov.Core()\n",
"\n",
"# read the network and corresponding weights from file\n",
"model = core.read_model(model=model_path)\n",
"\n",
"# compile the model for the CPU (you can choose manually CPU, GPU etc.)\n",
"# or let the engine choose the best available device (AUTO)\n",
"compiled_model = core.compile_model(model=model, device_name=device.value)\n",
"\n",
"# get input node\n",
"input_layer_ir = model.input(0)\n",
"N, C, H, W = input_layer_ir.shape\n",
"shape = (H, W)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create functions for data processing\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"def preprocess(image):\n",
" \"\"\"\n",
" Define the preprocess function for input data\n",
"\n",
" :param: image: the orignal input frame\n",
" :returns:\n",
" resized_image: the image processed\n",
" \"\"\"\n",
" resized_image = cv2.resize(image, shape)\n",
" resized_image = cv2.cvtColor(np.array(resized_image), cv2.COLOR_BGR2RGB)\n",
" resized_image = resized_image.transpose((2, 0, 1))\n",
" resized_image = np.expand_dims(resized_image, axis=0).astype(np.float32)\n",
" return resized_image\n",
"\n",
"\n",
"def postprocess(result, image, fps):\n",
" \"\"\"\n",
" Define the postprocess function for output data\n",
"\n",
" :param: result: the inference results\n",
" image: the orignal input frame\n",
" fps: average throughput calculated for each frame\n",
" :returns:\n",
" image: the image with bounding box and fps message\n",
" \"\"\"\n",
" detections = result.reshape(-1, 7)\n",
" for i, detection in enumerate(detections):\n",
" _, image_id, confidence, xmin, ymin, xmax, ymax = detection\n",
" if confidence > 0.5:\n",
" xmin = int(max((xmin * image.shape[1]), 10))\n",
" ymin = int(max((ymin * image.shape[0]), 10))\n",
" xmax = int(min((xmax * image.shape[1]), image.shape[1] - 10))\n",
" ymax = int(min((ymax * image.shape[0]), image.shape[0] - 10))\n",
" cv2.rectangle(image, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)\n",
" cv2.putText(\n",
" image,\n",
" str(round(fps, 2)) + \" fps\",\n",
" (5, 20),\n",
" cv2.FONT_HERSHEY_SIMPLEX,\n",
" 0.7,\n",
" (0, 255, 0),\n",
" 3,\n",
" )\n",
" return image"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Get the test video\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"video_path = \"https://storage.openvinotoolkit.org/repositories/openvino_notebooks/data/data/video/CEO%20Pat%20Gelsinger%20on%20Leading%20Intel.mp4\""
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## How to improve the throughput of video processing\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Below, we compare the performance of the synchronous and async-based approaches:\n",
"\n",
"### Sync Mode (default)\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Let us see how video processing works with the default approach.<br />\n",
"Using the synchronous approach, the frame is captured with OpenCV and then immediately processed:\n",
"\n",
"\n",
"\n",
"```\n",
"while(true) {\n",
"// capture frame\n",
"// populate CURRENT InferRequest\n",
"// Infer CURRENT InferRequest\n",
"//this call is synchronous\n",
"// display CURRENT result\n",
"}\n",
"```\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"def sync_api(source, flip, fps, use_popup, skip_first_frames):\n",
" \"\"\"\n",
" Define the main function for video processing in sync mode\n",
"\n",
" :param: source: the video path or the ID of your webcam\n",
" :returns:\n",
" sync_fps: the inference throughput in sync mode\n",
" \"\"\"\n",
" frame_number = 0\n",
" infer_request = compiled_model.create_infer_request()\n",
" player = None\n",
" try:\n",
" # Create a video player\n",
" player = utils.VideoPlayer(source, flip=flip, fps=fps, skip_first_frames=skip_first_frames)\n",
" # Start capturing\n",
" start_time = time.time()\n",
" player.start()\n",
" if use_popup:\n",
" title = \"Press ESC to Exit\"\n",
" cv2.namedWindow(title, cv2.WINDOW_GUI_NORMAL | cv2.WINDOW_AUTOSIZE)\n",
" while True:\n",
" frame = player.next()\n",
" if frame is None:\n",
" print(\"Source ended\")\n",
" break\n",
" resized_frame = preprocess(frame)\n",
" infer_request.set_tensor(input_layer_ir, ov.Tensor(resized_frame))\n",
" # Start the inference request in synchronous mode\n",
" infer_request.infer()\n",
" res = infer_request.get_output_tensor(0).data\n",
" stop_time = time.time()\n",
" total_time = stop_time - start_time\n",
" frame_number = frame_number + 1\n",
" sync_fps = frame_number / total_time\n",
" frame = postprocess(res, frame, sync_fps)\n",
" # Display the results\n",
" if use_popup:\n",
" cv2.imshow(title, frame)\n",
" key = cv2.waitKey(1)\n",
" # escape = 27\n",
" if key == 27:\n",
" break\n",
" else:\n",
" # Encode numpy array to jpg\n",
" _, encoded_img = cv2.imencode(\".jpg\", frame, params=[cv2.IMWRITE_JPEG_QUALITY, 90])\n",
" # Create IPython image\n",
" i = display.Image(data=encoded_img)\n",
" # Display the image in this notebook\n",
" display.clear_output(wait=True)\n",
" display.display(i)\n",
" # ctrl-c\n",
" except KeyboardInterrupt:\n",
" print(\"Interrupted\")\n",
" # Any different error\n",
" except RuntimeError as e:\n",
" print(e)\n",
" finally:\n",
" if use_popup:\n",
" cv2.destroyAllWindows()\n",
" if player is not None:\n",
" # stop capturing\n",
" player.stop()\n",
" return sync_fps"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Test performance in Sync Mode\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAFoAoADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD8rKKKKsAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9k=",
"text/plain": [
"<IPython.core.display.Image object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Source ended\n",
"average throuput in sync mode: 55.59 fps\n"
]
}
],
"source": [
"sync_fps = sync_api(source=video_path, flip=False, fps=30, use_popup=False, skip_first_frames=800)\n",
"print(f\"average throuput in sync mode: {sync_fps:.2f} fps\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Async Mode\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Let us see how the OpenVINO Async API can improve the overall frame rate of an application. The key advantage of the Async approach is as follows: while a device is busy with the inference, the application can do other things in parallel (for example, populating inputs or scheduling other requests) rather than wait for the current inference to complete first.\n",
"\n",
"\n",
"\n",
"In the example below, inference is applied to the results of the video decoding. So it is possible to keep multiple infer requests, and while the current request is processed, the input frame for the next is being captured. This essentially hides the latency of capturing, so that the overall frame rate is rather determined only by the slowest part of the pipeline (decoding vs inference) and not by the sum of the stages.\n",
"\n",
"```\n",
"while(true) {\n",
"// capture frame\n",
"// populate NEXT InferRequest\n",
"// start NEXT InferRequest\n",
"// this call is async and returns immediately\n",
"// wait for the CURRENT InferRequest\n",
"// display CURRENT result\n",
"// swap CURRENT and NEXT InferRequests\n",
"}\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"def async_api(source, flip, fps, use_popup, skip_first_frames):\n",
" \"\"\"\n",
" Define the main function for video processing in async mode\n",
"\n",
" :param: source: the video path or the ID of your webcam\n",
" :returns:\n",
" async_fps: the inference throughput in async mode\n",
" \"\"\"\n",
" frame_number = 0\n",
" # Create 2 infer requests\n",
" curr_request = compiled_model.create_infer_request()\n",
" next_request = compiled_model.create_infer_request()\n",
" player = None\n",
" async_fps = 0\n",
" try:\n",
" # Create a video player\n",
" player = utils.VideoPlayer(source, flip=flip, fps=fps, skip_first_frames=skip_first_frames)\n",
" # Start capturing\n",
" start_time = time.time()\n",
" player.start()\n",
" if use_popup:\n",
" title = \"Press ESC to Exit\"\n",
" cv2.namedWindow(title, cv2.WINDOW_GUI_NORMAL | cv2.WINDOW_AUTOSIZE)\n",
" # Capture CURRENT frame\n",
" frame = player.next()\n",
" resized_frame = preprocess(frame)\n",
" curr_request.set_tensor(input_layer_ir, ov.Tensor(resized_frame))\n",
" # Start the CURRENT inference request\n",
" curr_request.start_async()\n",
" while True:\n",
" # Capture NEXT frame\n",
" next_frame = player.next()\n",
" if next_frame is None:\n",
" print(\"Source ended\")\n",
" break\n",
" resized_frame = preprocess(next_frame)\n",
" next_request.set_tensor(input_layer_ir, ov.Tensor(resized_frame))\n",
" # Start the NEXT inference request\n",
" next_request.start_async()\n",
" # Waiting for CURRENT inference result\n",
" curr_request.wait()\n",
" res = curr_request.get_output_tensor(0).data\n",
" stop_time = time.time()\n",
" total_time = stop_time - start_time\n",
" frame_number = frame_number + 1\n",
" async_fps = frame_number / total_time\n",
" frame = postprocess(res, frame, async_fps)\n",
" # Display the results\n",
" if use_popup:\n",
" cv2.imshow(title, frame)\n",
" key = cv2.waitKey(1)\n",
" # escape = 27\n",
" if key == 27:\n",
" break\n",
" else:\n",
" # Encode numpy array to jpg\n",
" _, encoded_img = cv2.imencode(\".jpg\", frame, params=[cv2.IMWRITE_JPEG_QUALITY, 90])\n",
" # Create IPython image\n",
" i = display.Image(data=encoded_img)\n",
" # Display the image in this notebook\n",
" display.clear_output(wait=True)\n",
" display.display(i)\n",
" # Swap CURRENT and NEXT frames\n",
" frame = next_frame\n",
" # Swap CURRENT and NEXT infer requests\n",
" curr_request, next_request = next_request, curr_request\n",
" # ctrl-c\n",
" except KeyboardInterrupt:\n",
" print(\"Interrupted\")\n",
" # Any different error\n",
" except RuntimeError as e:\n",
" print(e)\n",
" finally:\n",
" if use_popup:\n",
" cv2.destroyAllWindows()\n",
" if player is not None:\n",
" # stop capturing\n",
" player.stop()\n",
" return async_fps"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Test the performance in Async Mode\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAFoAoADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD8rKKKKsAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9k=",
"text/plain": [
"<IPython.core.display.Image object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Source ended\n",
"average throuput in async mode: 75.17 fps\n"
]
}
],
"source": [
"async_fps = async_api(source=video_path, flip=False, fps=30, use_popup=False, skip_first_frames=800)\n",
"print(f\"average throuput in async mode: {async_fps:.2f} fps\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Compare the performance\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA9IAAAMPCAYAAAA5M+0vAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2NklEQVR4nOzdZ3hU1f728XtSCCEhCb2TUAIoEJCuCKEooHAERFFQqihYjkI4NJWuAkqxVxAUUUFRigUUpGikNxUpoYTekYQECJCs5wXP7D9DJiF7iGQI3891zaVZa+01vz2ZMLmzdnEYY4wAAAAAAECW+OR0AQAAAAAA3EgI0gAAAAAA2ECQBgAAAADABoI0AAAAAAA2EKQBAAAAALCBIA0AAAAAgA0EaQAAAAAAbCBIAwAAAABgA0EaAAAAAAAbCNIAgFyrSZMmcjgcmjZtWk6XAlwXERERcjgcWrp0aU6XAgC5GkEaAGw4fvy4RowYofr16yssLEz+/v4qWrSoqlWrpoceekjvvPOO9u7dm9Nl4jr75JNP5HA4FBgYqFOnTmVpm8GDB8vhcKhSpUou7RcuXNCHH36ou+++W0WLFlWePHlUoEABVapUSffcc49efvllrVu37prq3bVrl3x8fORwOBQZGXlNcwEAcDPyy+kCAOBGsXLlSrVp00YnTpyQJBUvXlwVKlRQamqqduzYoc2bN2vWrFn6559/9OKLL+ZwtbieHnjgAf33v//V6dOn9eWXX6pPnz6Zjk9NTdX06dMlST169LDajx49qlatWmnDhg2SpNDQUFWpUkV58uTRvn37tGDBAi1YsEBLlizRokWLPK536tSpMsZIknbs2KHly5ercePGHs8HAMDNhhVpAMiCpKQk3X///Tpx4oTq16+v1atX69ChQ1q3bp02btyoxMRErVq1Sv369VOBAgVyulxcZ0FBQerYsaMkZekw8oULF+rgwYPy9fVVt27drPZevXppw4YNKlasmL755hudOHFCf/zxh9auXasjR45ox44dGjdunCpUqOBxrWlpafrkk08kyXqvfvzxxx7PBwDAzYggDQBZ8MMPP+jQoUPy9fXVt99+q7p167r0+/j4qF69epo4caKefvrpHKoSOalnz56SpFWrVmnLli2Zjp06daokqWXLlipZsqQk6fDhw/ruu+8kSW+99Zbat28vX19fl+0qVKiggQMH6oMPPvC4zp9//ln79u1Tvnz59Pbbb0uSvv76a50+fdrjOQEAuNkQpAEgC3bu3ClJKly4sEqUKJHl7b766is5HA6VLVtWaWlpGY4bNmyYHA6HWrdubbUtXbpUDodDERERkqR58+apSZMmCgsLU1BQkOrXr68vv/wy0+c/dOiQBg8erJo1ayokJET58uVTZGSkHn74Yc2fPz/L+xEfHy+HwyGHwyHp0opq8+bNVaBAAYWGhuquu+7S77//bo2Pi4tTt27dVKpUKeXNm1dVq1a9avhbuXKlHnroIZUqVUoBAQEqXLiwWrZsqdmzZ2e63aZNm9S+fXsVKlRI+fLlU/Xq1TV+/HilpqZedb8OHTqkgQMHqlq1agoODlZQUJCioqI0cuRI28HyjjvuUJUqVSRlvip94sQJzZs3T9L/hW9J2r17t3W4dfXq1W09tx3O1ef27durY8eOKlasmJKTkzVz5sxMt5s9e7ZatWqlokWLyt/f3zpvu1OnTvr222+tca+99pocDocaNmyY6Xxdu3aVw+Fw+cPTtGnT5HA41KRJE+vr+vXrKzg4WCEhIWratKl+/vnnTOfdsWOH/vvf/+qWW25RcHCw8ufPrypVquixxx7T8uXLM932clf+/H3++ee6/fbbFRISosKFC6tdu3b6+++/rfHr1q3T/fffr2LFiikwMFC1a9fWN998k+lzLFiwQPfdd5+KFSumPHnyqHjx4mrXrp1++eWXq9bWokULhYWFKX/+/Kpbt26WjyrYsWOHnnrqKVWqVEn58uWztn/99deVkpKSpTkAAJIMAOCq3n77bSPJSDLbt2/P8nbnz583xYoVM5LMDz/84HbMxYsXTenSpY0k8+2331rtS5YsMZJMeHi4GTlypJFkihUrZmrXrm3CwsKset566y238/74448mJCTESDI+Pj7mlltuMbVq1TIFCxa05s2q3bt3W8/3/vvvG4fDYYoVK2Zq1aplgoODjSSTN29e89tvv5kVK1aY0NBQExwcbGrXrm2KFi1qbfvqq6+6nX/ixInG4XAYSaZAgQKmTp06pmTJktZ2Xbt2Nampqem2++GHH0yePHmMJJMvXz5Tu3ZtEx4ebiSZ+++/30RHRxtJZurUqem2XbRokQkNDTWSTJ48eUzlypVN5cqVja+vr5FkKleubA4cOJDl18gYY8aNG2ckmRIlSpiLFy+6HfPmm28aSaZw4cLm/PnzVvtff/1l7e9HH31k63mz6sSJEyYgIMBIMj/99JMxxpiYmBgjydx+++0Zbvfiiy9atRUpUsTUqlXL3Hrrrdb7q2HDhtbYo0ePWt+Tv//+2+18//zzjwkMDDSSzIYNG6z2qVOnGkkmOjra9OzZ00gyZcqUMbVq1TJBQUHWe3nOnDlu5506dar13H5+fqZ69eqmRo0aVp3R0dFZfq0u//kbMmSIkWTKli1ratasafLmzWskmYIFC5rt27ebOXPmmICAAFOgQAFTu3ZtU6BAASPJOBwOM3PmTLfzP/fcc9ZrWrRoUVO3bl1TuHBhq+3FF190u91HH31k/ayEhoaaOnXqmBIlShhJpm/fvtb7f8mSJem2/eyzz6zvf2BgoKlWrZopX7688fHxsd4DiYmJWX6NAOBmRpAGgCzYuXOnFbAiIiLM+++/b/bu3ZulbQcPHmwFO3e+++47I8kUL17cXLhwwWp3/iLv7+9vAgMDzYwZM6y+CxcumKeeespIMsHBwel++d28ebPJly+fkWQeeOCBdIFw8+bNZuzYsVndfZcgHRgYaD766COTlpZmjDEmKSnJtGrVykgytWvXNhEREaZPnz4mOTnZ2v6FF16wwm5CQoLL3L/88osVDIYNG+YSLmfMmGEFo9dee81lu6NHj1p/FHjwwQdd5p07d64JDAw0/v7+boN0XFycyZ8/v5FkXnjhBXP69Gmr7+DBg+aee+4xkkyzZs2y/BoZY8yhQ4eMn5+fkWS+//57t2Nuu+02K/RcLi0tzZQvX95IMkFBQWb48OHmjz/+cPsHBE85Q3ypUqWseTdt2mR9b7ds2ZJum2PHjhlfX1/j5+dnZs2aZX3fndauXWsmT57s0vbwww8bSSYmJsZtHc4/TNWpU8el3Rmk/f39TaFChaywb8yl91n79u2tn8Er61i0aJEVCJ9++mlz8uRJl/6VK1ead9555yqv0P9x/vz5+fmZ4OBgM2/ePKvv6NGjplatWkaSad68uQkLCzOjRo2yfn4vXLhgunXrZv0h4Mrv4bRp04wk4+vra9577z2r/+LFi2bChAnWz8NXX33lst3ff/9t/Tw8++yz5ty5c8aYS++dDz74wPo+uQvSv/32m/Hz8zN58uQxr7/+uklJSbH6tm3bZurWrWskmZ49e2b5NQKAmxlBGgCy6M0337R+UXc+ihUrZu655x7zyiuvZLhSvXPnTuNwOIy/v785cuRIuv527doZSWbIkCEu7c5f5CWZ0aNHp9vu7NmzpkiRIkaSmTt3rkvf/fffb63AZUcQuzxIP/XUU+n6N2/ebPVXr1493XOeP3/eWjW7cjWxWbNmRpK599573T63czW0cOHCVnAwxphRo0ZZf4A4e/Zsuu1efvllq6Yrg/QjjzxihRF3EhMTTalSpYwks2rVKrdjMvKf//zHCvdX2rhxo1XTH3/8ka7/t99+cznawPmHkjvvvNMMGDDA/Prrr7ZquVLNmjWNJDN48GCXdme4HzBgQLptVqxYYSSZmjVrZvl5nO/dIkWKuAS2K5/vgw8+cGl3BmlJZvr06em2O3TokPXHkU2bNrn0OYNt165ds1xnVvYhoyMpvv/+e6vf3Xv3+PHj1urvxo0bXfoqVKiQ4c+SMcY8+uijRpKpVq2aS7tzlf62225zu93jjz9u1XRlkG7YsKGRZCZOnOh2271795qgoCDj6+tr+0gMALgZEaQBwIa1a9eazp07W6uZlz8cDofp3r27SUpKSrddixYt3P5C7lzBdDgcZseOHS59l/8if+LECbf1OOedMGGC1Xb27FnrF/iFCxdmw167BukrQ4GT81Dd119/3W2/c9V6/PjxVltSUpK10r9o0SK32504ccIas2zZMqu9QYMG1iq2O6dOnbJW5y4P0ufPn7dW692twDp1797dSDKvvPJKhmPc+fbbb40kExAQkO775jyc98qV2MsdOHDA9O/f3wryVz5uv/32dO+VrNiwYUOGK8+vv/669UeJKw9JP3jwoHU0wZo1a7L8fJUrVzaSzKxZs1za165da626X3kkhTNIh4aGpltxdqpUqZKRZGbPnm21Xf7+3LZtW5ZrzMzlP3+nTp1K13/48GGrP6NDzatUqWIkma+//tpq27Jli7VdRt/Hy48S2LNnj9VevHhxI8l8/PHHbre7/A9alwfp/fv3W6vrmR263aRJEyPJfP755xmOAQBcwsXGAMCG2rVra8aMGfrnn3+0ceNGffzxx+rSpYsKFiwoY4ymTZumhx56KN12vXv3lpT+NkPTpk3TxYsX1bRp0wxvaVS4cGEVLFjQbV+xYsUkyeXCWHFxcdZFg+644w77O3kVFStWdNtepEiRTPuLFi0q6dKtxJx27NhhXRSsWrVqbrcrWLCgSpUqJUnaunWr1e78/6pVq7rdLjQ0VKVLl07XHhcXpzNnzki6dLupO++80+3DeZ/mffv2uZ0/I61bt1bRokWVkpKiL774wmq/cOGCZsyYIcn13tFXKlmypMaPH6/9+/dr586dmjVrlp577jnr/bFixQo1bdpU//zzj626nO+9evXqWRdFc3rkkUfk7++vw4cP64cffnDpK1GihLp06aIzZ86oXr16atCggQYPHqy5c+dmWsMTTzwhSZoyZYpL+0cffSRJeuihh5Q/f36320ZGRloXtruSu/f8n3/+KUkqVKiQKlWqlGFNnihcuLBCQ0PTtTvfz5K99/y2bdskSYGBgRn+zN96663WFdud7/OEhAQdPnxYUsbv+cqVK8vPzy9d+6ZNmyRJvr6+uueeezJ8z2/evFmS/fc8ANyMCNIA4AFfX1/VqFFDPXr00Keffqpdu3apffv2kqTvv/9eK1eudBl/3333qUSJEtq6dat+++03q90Zbh5//PEMnysoKCjDPh+fS/+Mm/9/tWdJSkxMtGoMDg62uWdXl1E9zuBztf7La3WGIR8fH5dgciXnldIvD0/O/3cGK3fc9V0e/mJjYzN87N+/X5Ks0J1V/v7+evTRRyX9322uJGn+/Pk6fvy48ubNq86dO2dprvLly+vBBx/U66+/rm3btunll1+WdCno2LkF1vnz5/X5559LunS17CsVLlxY9957ryT395SeMmWKXn31VVWsWFGrVq3SuHHj1K5dOxUtWlQdOnRQfHx8um26deumgIAA/fzzz9q7d6+kS6+l848L/8Z7PiwsLMPtPHW193NWxrh7z2f2vvXz81PhwoVdxl/+3s9oW19fXxUqVChdu/M9n5KSkul7/tixY5Lsv+cB4GZEkAaAbBAaGqqpU6dav+RfGaT9/PysWx1NnjxZ0qVb2MTFxalQoUJWCM8OISEhkqTU1FSXlTBv5FyRTEtL09GjRzMcd+jQIZfxl///kSNHMtzOXZ/zjwsOh0MXL16UuXSaU4aPzG5llRHn93rdunX666+/JP1fqG7fvr1Hgc/X11fPP/+8atWqJSn9eywzc+bM0YkTJyRJzzzzjHUrs8sfc+fOlXTpD0FXfi/8/f01YMAAbd++Xfv27dOXX36p3r17K3/+/Prmm2901113pXuvFSpUSA888IDS0tKscD5r1iwlJiaqWrVqatCgge3XICPO9/ypU6eybc5/S1betxcvXtTx48ddxl/+3s9o29TUVOv7fDnne75s2bJXfb8bYzRixAiP9g0AbiYEaQDIJqGhodbhzefPn0/X//jjj8vHx0dfffWVEhMTrUDdpUsXBQQEZFsdlSpVUt68eSXJ5d7O3qhixYrWoajOwHmlf/75RwcOHJAk3XLLLVa78/Dky+/le7mEhARrVflylSpVUkBAgIwxGT7ntapatarq1asn6VKAPnz4sBYsWCDJ9d7RnoiMjJTk/j2WEWeQDQoKUrFixTJ8+Pv768KFC5o+fXqGc5UuXVoPPfSQ3n//ff35558KCQnRzp07tXDhwnRjnac0TJ06VWlpadZ7vlevXlmuPSuioqIkXbpH9/bt27N17uzmfN+ePXvWuj/9lf7++2/rlAfnez40NFTFixe3+t3Ztm2bLl68mK7deV/y/fv36+TJk9e2AwAASQRpAMiS48ePKy0tLdMx27Zts1by3J2nGR4erpYtW+rMmTN65513NHv2bEmZH+LqiYCAALVp00aSNHbsWJfDSr1NUFCQoqOjJUkTJ050O+b1119XamqqChcubIVTSbrnnnskSR9++KF1Tvjl3n33XbehIjAw0Hp9XnvttWveh4w4A/OMGTM0depUXbx4UeHh4WrevLnb8cnJyUpOTs50zvPnz2vVqlWS3L/H3Nm/f79+/vlnSdL06dN1+PDhDB/PPPOMJNdD0jNTqlQplStXTpKsP3ZcrlGjRrrlllu0d+9evfnmm4qNjVVAQIC6dOmSpfmzKjw8XHXq1JEkjRkzJlvnzm6VK1e2zqnO6D0/YcIESZcCcJkyZax253v+rbfecrvdG2+84ba9fPnyql27ttLS0qy5AQDXhiANAFnw5ZdfqmrVqnrjjTfSrXIaY7Rw4UK1bdtWxhgrMLvjXKEbNmyYzp07pzvuuEO33nprttc7atQo5cuXT0uWLFGnTp2sQ6Od/v77b40bNy7bn9cTL7zwghwOh3744QeNGDFCFy5csPpmzpxp1Tl48GCXlfs+ffooLCxMhw4dUvfu3V3OIf3uu+/00ksvyd/f3+1zvvzyy8qfP79mzJihJ554wrqIk9PFixe1bNky9ezZ021AzIpOnTopMDBQR44c0ejRoyVJ3bt3z/AiWrt371Z4eLief/55/fHHH+n+APLXX3/p/vvvV3x8vPz8/PTYY49lqY5p06YpLS1NRYoUsf6AkBHnRdA2b95sBfZFixapb9++Wr9+vUtNaWlpmjFjhrWqX7duXbdzOt/zAwYMkCR16NAhw4vnXYtXX31VPj4+mjZtmp577rl0h3mvXr1a7777brY/rydefPFFSdIHH3ygDz74wHpd09LS9MYbb1hHBAwbNsxlu/79+8vf31/r169XTEyMdVSCMUZTpkzRlClT3F5sTLoUzv38/DRmzBi9+OKL6V6fc+fO6ccff9QDDzyQnbsKALnX9bg0OADc6N5++22XWxAVL17c1K5d20RFRZkCBQpY7SVKlDDr16/PcJ6LFy+63NboyvsbX855+53w8PAMx3Tr1s1IMsOHD0/X9+OPP1q36fLx8TG33nqrqVWrlilUqNBV573S5bcXykh4eLjb+9dmpdYJEyYYh8NhJJkCBQqYunXrurxOXbp0cXs/7Pnz51v3Fc6XL5+pU6eOiYiIMJJM+/btTXR0dIav85IlS0zhwoWt16dy5cqmQYMGpmrVqtbtwySZ3bt3Z/FVSs95P2D9/9ujxcfHZzj2r7/+cnmPhYSEmKioKFO7dm3rHtz6/7fVmjZtWpaePy0tzbpncb9+/bK0TZ06dYwk88QTTxhj/u92Xs6aatasaWrXrm3dw1yS+e9//5vhfCdPnjR58+bN8P7Gl3Pe/io6OjrDMZl9Tz/++GPr/eDv72+ioqJMjRo1TGho6FXnvVJWfv6u9h7JrFbnrdCkS/ejr1u3rstr+sILL7id8/3337d+VsLCwkzdunVNyZIljSTTt2/fTH8OZ86caYKCgqxbYVWtWtU0aNDAVK5c2Xrd+NUQALKGFWkAyILevXtr+fLlGjp0qBo3bixJ+uOPP7R161blyZNHzZo104QJE7Rt2zbddtttGc7j6+trrfqFhISoY8eO/1rNrVq10pYtWxQTE6MqVaooPj5e27ZtU4ECBdS5c2evWZ2TpJiYGP3+++968MEHlTdvXm3cuFFnz57V3Xffra+++kqffvqpdSG3y7Vp00arVq1S27ZtFRAQoL/++ktBQUF67bXX9NVXX2X6nE2aNNHWrVs1atQo1a1bV4cPH9aaNWt04MABVatWTQMGDFBsbKzCw8M93q/Lz4du1qxZpnNVrVpVf/31lyZOnKjWrVurUKFC2r59uzZu3Khz586pbt26GjRokLZs2aJu3bpl6fmXL19unYeb1XOzneO+/PJLnT17Vo0aNdI777yj+++/X8WKFdOuXbu0adMm+fn56T//+Y/mzZunN998M8P5ChQoYK1yRkZGqkmTJlmqwxM9evTQn3/+qd69e6ts2bLavn27du/erZIlS6pXr1566aWX/rXntuv111/XDz/8oDZt2igtLU0bNmyQw+FQ27ZttWjRogxr7d27txYtWqS77rpLqamp+vvvv1WyZElNnjxZkyZNyvQ5O3bsqK1bt2rgwIGqWrWq9u7dqzVr1uj48eOqW7euhg8frg0bNvwbuwsAuY7DGC8+eQ4AcqEnnnhCH330kfr06aP33nsvp8sB/nUtWrTQzz//rLFjx2rQoEE5XQ4AANeMIA0A11FiYqJKlSqlpKQkrV+/PtPVayA32LlzpyIjI+Xv76+9e/dmev9kAABuFBzaDQDX0fDhw5WUlKTGjRsTopHrpaamatCgQTLG6OGHHyZEAwByDVakAeBftmDBAo0dO1b79+/Xzp075evrq9jYWNWvXz+nSwP+FdOmTdPUqVO1c+dOHThwQMHBwfrzzz8VERGR06UBAJAtWJEGgH/Z4cOHtWzZMh04cEC1a9fWvHnzCNHI1eLj47V8+XIlJCSocePG+vnnnwnRAIBchRVpAAAAAABsYEUaAAAAAAAbCNIAAAAAANhAkAYAAAAAwAaCNAAAAAAANhCkAQAAAACwgSANAAAAAIANBGkAAAAAAGwgSAMAAAAAYANBGgAAAAAAGwjSAAAAAADYQJAGAAAAAMAGgjQAAAAAADYQpAEAAAAAsIEgDQAAAACADQRpAAAAAABsIEgDAAAAAGADQRoAAAAAABsI0gAAAAAA2ECQBgAAAADABoI0AAAAAAA2EKQBAAAAALCBIA0AAAAAgA0EaQAAAAAAbCBIAwAAAABgg19OF+Bt0tLSdPDgQeXPn18OhyOnywEAAAAAXAfGGJ0+fVolS5aUj0/ma84E6SscPHhQZcqUyekyAAAAAAA5YN++fSpdunSmYwjSV8ifP7+kSy9eSEhIDlcDAAAAALgeEhMTVaZMGSsTZoYgfQXn4dwhISEEaQAAAAC4yWTlFF8uNgYAAAAAgA0EaQAAAAAAbCBIAwAAAABgA0EaAAAAAAAbCNIAAAAAANhAkAYAAAAAwAaCNAAAAAAANhCkAQAAAACwgSANAAAAAIANBGkAAAAAAGwgSAMAAAAAYANBGgAAAAAAGwjSAAAAAADYQJAGAAAAAMAGgjQAAAAAADYQpAEAAAAAsIEgDQAAAACADQRpAAAAAABsIEgDAAAAAGADQRoAAAAAABsI0gAAAAAA2ECQBgAAAADABoI0AAAAAAA2EKQBAAAAALCBIA0AAAAAgA0EaQAAAAAAbCBIAwAAAABgA0EaAAAAAAAb/HK6AAAA4F0iBn+f0yUAAHKh+LGtc7qEbMOKNAAAAAAANhCkAQAAAACwgSANAAAAAIANBGkAAAAAAGwgSAMAAAAAYANBGgAAAAAAGwjSAAAAAADYQJAGAAAAAMAGgjQAAAAAADYQpAEAAAAAsIEgDQAAAACADQRpAAAAAABsIEgDAAAAAGADQRoAAAAAABsI0gAAAAAA2ECQBgAAAADABoI0AAAAAAA2EKQBAAAAALCBIA0AAAAAgA0EaQAAAAAAbCBIAwAAAABgA0EaAAAAAAAbCNIAAAAAANhAkAYAAAAAwAaCNAAAAAAANhCkAQAAAACwgSANAAAAAIANBGkAAAAAAGwgSAMAAAAAYANBGgAAAAAAGwjSAAAAAADYQJAGAAAAAMAGgjQAAAAAADYQpAEAAAAAsIEgDQAAAACADQRpAAAAAABs8LogPW3aNDkcjkwfzZs3d9kmMTFRMTExCg8PV0BAgCIiIjRgwAAlJSXl0F4AAAAAAHIrv5wu4Eo1a9bU8OHD3fZ9/fXX2rx5s1q2bGm1JScnKzo6Whs3blSLFi3UqVMnbdiwQePHj9eyZcu0fPly5c2b93qVDwAAAADI5bwySNesWTNd+/nz5/X222/Lz89P3bp1s9pfffVVbdy4UYMGDdLYsWOt9sGDB2vcuHGaNGmShgwZcj1KBwAAAADcBLzu0O6MzJkzRydOnFCbNm1UrFgxSZIxRpMnT1ZwcLCGDh3qMn7o0KEKDg7W5MmTc6JcAAAAAEAudcMEaWcg7tWrl9UWFxengwcPqmHDhgoKCnIZHxQUpIYNG2rXrl3at2/fda0VAAAAAJB73RBBes+ePVq8eLFKly6tVq1aWe1xcXGSpMjISLfbOdud4wAAAAAAuFZed460O1OnTlVaWpq6d+8uX19fqz0hIUGSFBoa6na7kJAQl3HupKSkKCUlxfo6MTExO0oGAAAAAORSXr8inZaWpqlTp8rhcKhnz57ZPv+YMWMUGhpqPcqUKZPtzwEAAAAAyD28PkgvWrRIe/fuVbNmzVSuXDmXPudKdEYrzs7V5YxWrCVpyJAhSkhIsB6cTw0AAAAAyIzXH9rt7iJjTlc7B/pq51BLUkBAgAICAq61TAAAAADATcKrV6RPnDihuXPnqmDBgmrfvn26/sjISJUsWVKxsbFKTk526UtOTlZsbKzKlSvH4doAAAAAgGzj1UF6+vTpOn/+vB599FG3q8YOh0O9evVSUlKSRo8e7dI3evRoJSUl6fHHH79e5QIAAAAAbgJefWj3lClTJLk/rNtp4MCBmjt3rsaNG6cNGzaoVq1aWr9+vX766SfVrVtXffv2vU7VAgAAAABuBl67Ir169Wr99ddfqlevnqpXr57huKCgIC1btkx9+/bVli1bNGHCBG3dulX9+/fX4sWLFRgYeB2rBgAAAADkdg5jjMnpIrxJYmKiQkNDlZCQYN2HGgCAm0nE4O9zugQAQC4UP7Z1TpeQKTtZ0GtXpAEAAAAA8EYEaQAAAAAAbCBIAwAAAABgA0EaAAAAAAAbCNIAAAAAANhAkAYAAAAAwAaCNAAAAAAANhCkAQAAAACwgSANAAAAAIANBGkAAAAAAGwgSAMAAAAAYANBGgAAAAAAGwjSAAAAAADYQJAGAAAAAMAGgjQAAAAAADYQpAEAAAAAsIEgDQAAAACADQRpAAAAAABsIEgDAAAAAGADQRoAAAAAABsI0gAAAAAA2ECQBgAAAADABoI0AAAAAAA2EKQBAAAAALCBIA0AAAAAgA0EaQAAAAAAbCBIAwAAAABgA0EaAAAAAAAbCNIAAAAAANhAkAYAAAAAwAaCNAAAAAAANhCkAQAAAACwgSANAAAAAIANBGkAAAAAAGwgSAMAAAAAYANBGgAAAAAAGwjSAAAAAADYQJAGAAAAAMAGgjQAAAAAADYQpAEAAAAAsIEgDQAAAACADQRpAAAAAABsIEgDAAAAAGADQRoAAAAAABsI0gAAAAAA2ECQBgAAAADABoI0AAAAAAA2EKQBAAAAALCBIA0AAAAAgA0EaQAAAAAAbCBIAwAAAABgA0EaAAAAAAAbCNIAAAAAANhAkAYAAAAAwAaCNAAAAAAANhCkAQAAAACwgSANAAAAAIANBGkAAAAAAGwgSAMAAAAAYANBGgAAAAAAGwjSAAAAAADYQJAGAAAAAMAGgjQAAAAAADYQpAEAAAAAsIEgDQAAAACADQRpAAAAAABsIEgDAAAAAGADQRoAAAAAABsI0gAAAAAA2ODVQfrbb7/V3XffrUKFCilv3rwqV66cOnXqpH379rmMS0xMVExMjMLDwxUQEKCIiAgNGDBASUlJOVQ5AAAAACC38svpAtwxxqhPnz768MMPVaFCBT388MPKnz+/Dh48qGXLlmnPnj0qU6aMJCk5OVnR0dHauHGjWrRooU6dOmnDhg0aP368li1bpuXLlytv3rw5vEcAAAAAgNzCK4P0m2++qQ8//FBPPfWU3nzzTfn6+rr0X7x40fr/V199VRs3btSgQYM0duxYq33w4MEaN26cJk2apCFDhly32gEAAAAAuZvDGGNyuojLnT17VqVKlVKBAgW0bds2+fllnPWNMSpdurQSExN1+PBhBQUFWX3JyckqXry4ihYtqp07d2b5+RMTExUaGqqEhASFhIRc074AAHAjihj8fU6XAADIheLHts7pEjJlJwt63Yr0Tz/9pH/++Uc9evRQamqq5s2bp+3btyssLEx33XWXKlasaI2Ni4vTwYMH1bJlS5cQLUlBQUFq2LChFi5cqH379lmHggMAAAAAcC28LkivW7dOkuTr66uoqCht377d6vPx8VG/fv00fvx4SZeCtCRFRka6nSsyMlILFy5UXFxchkE6JSVFKSkp1teJiYnZsh8AAAAAgNzJ667affToUUnSxIkTFRoaqtWrV+v06dNavny5KlWqpAkTJui9996TJCUkJEiSQkND3c7lXI53jnNnzJgxCg0NtR6sXAMAAAAAMuN1QTotLU2SlCdPHs2ZM0d169ZVcHCwGjVqpK+++ko+Pj6aMGFCtj3fkCFDlJCQYD2uvLUWAAAAAACX87pDu52ry3Xq1FHJkiVd+qpVq6by5ctrx44dOnXqlDU2oxVn52HaGa1YS1JAQIACAgKyo3QAAAAAwE3A61akK1euLEkKCwtz2+9sP3v2rHVutPNc6Std7RxqAAAAAADs8roV6aZNm0qStmzZkq7vwoUL2rFjh4KCglSkSBEVL15cJUuWVGxsrJKTk9Pd/io2NlblypXjvGcAAAAAQLbxuhXpChUqqEWLFtqxY4cmT57s0jd27FidOnVK7du3l5+fnxwOh3r16qWkpCSNHj3aZezo0aOVlJSkxx9//HqWDwAAAADI5RzGGJPTRVxp586duuOOO3T06FG1bt1aVapU0YYNG/TLL78oPDxcK1euVPHixSVdWnlu2LChNm3apBYtWqhWrVpav369fvrpJ9WtW1fLli1TYGBglp/bzk24AQDIjSIGf5/TJQAAcqH4sa1zuoRM2cmCXrciLV1alV67dq26d++udevW6c0331RcXJyefvpprV692grRkhQUFKRly5apb9++2rJliyZMmKCtW7eqf//+Wrx4sa0QDQAAAADA1XjlinROYkUaAHCzY0UaAPBvYEUaAAAAAICbFEEaAAAAAAAbCNIAAAAAANhAkAYAAAAAwAaCNAAAAAAANhCkAQAAAACwgSANAAAAAIANBGkAAAAAAGwgSAMAAAAAYANBGgAAAAAAGwjSAAAAAADYQJAGAAAAAMAGgjQAAAAAADYQpAEAAAAAsIEgDQAAAACADQRpAAAAAABsIEgDAAAAAGADQRoAAAAAABsI0gAAAAAA2ECQBgAAAADABoI0AAAAAAA2EKQBAAAAALCBIA0AAAAAgA0EaQAAAAAAbCBIAwAAAABgA0EaAAAAAAAbCNIAAAAAANhAkAYAAAAAwAa/nC4Anuk4IiqnSwAA5FpjcroAAAC8GivSAAAAAADYQJAGAAAAAMAGgjQAAAAAADYQpAEAAAAAsIEgDQAAAACADQRpAAAAAABsIEgDAAAAAGADQRoAAAAAABsI0gAAAAAA2ECQBgAAAADABoI0AAAAAAA2EKQBAAAAALCBIA0AAAAAgA0EaQAAAAAAbCBIAwAAAABgA0EaAAAAAAAbCNIAAAAAANhAkAYAAAAAwAaCNAAAAAAANhCkAQAAAACwgSANAAAAAIANBGkAAAAAAGwgSAMAAAAAYANBGgAAAAAAGwjSAAAAAADYQJAGAAAAAMAGgjQAAAAAADYQpAEAAAAAsIEgDQAAAACADQRpAAAAAABsIEgDAAAAAGADQRoAAAAAABsI0gAAAAAA2ECQBgAAAADABoI0AAAAAAA2EKQBAAAAALCBIA0AAAAAgA0EaQAAAAAAbCBIAwAAAABgA0EaAAAAAAAbvDJIR0REyOFwuH00adIk3fiUlBSNGjVKkZGRyps3r0qWLKknnnhCR48evf7FAwAAAAByNb+cLiAjoaGh6tu3b7r2iIgIl6/T0tLUtm1bLVy4UA0aNFCHDh0UFxenyZMna/HixVq5cqWKFClyfYoGAAAAAOR6Xhukw8LCNGLEiKuO++STT7Rw4UJ16tRJM2bMkMPhkCS9//77evLJJ/Xiiy/qgw8++JerBQAAAADcLLzy0G47PvroI0nSmDFjrBAtSb1791b58uU1Y8YMnT17NqfKAwAAAADkMl4bpFNSUjRt2jS98sorevvtt7Vq1ap0Y86dO6dVq1apcuXKCg8Pd+lzOBy6++67lZycrLVr116vsgEAAAAAuZzXHtp9+PBh9ejRw6Wtbt26+uKLL1ShQgVJ0s6dO5WWlqbIyEi3czjb4+Li1KhRI7djUlJSlJKSYn2dmJiYHeUDAAAAAHKpLAXpZs2aeTS5w+HQ4sWLbW/Xo0cPNWrUSNWqVVNwcLC2b9+uiRMnavr06WrevLn+/PNP5c+fXwkJCZIuXZjMnZCQEEmyxrkzZswYjRw50naNAAAAAICbU5aC9NKlS922OxwOGWMybL/8nGU7hg8f7vJ1zZo19emnn0qSpk+fro8++kgxMTEezX2lIUOGuMyVmJioMmXKZMvcAAAAAIDcJ0vnSKelpbk8zp49qzZt2qhSpUqaPn264uPjdfbsWcXHx+vTTz9VpUqV9J///EdnzpzJ1mJ79+4tSYqNjZX0fyvRGa04Ow/TzmjFWpICAgIUEhLi8gAAAAAAICMeXWxs+PDh+vPPP7VmzRo98sgjKlu2rAICAlS2bFk9+uijWrVqlTZt2pRuZflaFS5cWJKUnJwsSSpfvrx8fHwUFxfndryzPaNzqAEAAAAAsMujIP3555+rQ4cOCg4OdtsfEhKiDh066Isvvrim4q7kvHJ3RESEJCkwMFD16tXTtm3btGfPHpexxhj9/PPPCgoKUp06dbK1DgAAAADAzcujIH3s2DFduHAh0zEXL17U0aNHbc+9detWt4eEb926VYMGDZIkde7c2Wp/4oknJF061/ny87U/+OAD7dq1S4888ogCAwNt1wEAAAAAgDse3f6qQoUK+uqrrzRs2DAVKlQoXf+xY8c0a9YsVaxY0fbcX375pSZOnKjGjRsrPDxcQUFB2r59u3744QdduHBBQ4YMUePGja3x3bp108yZM/XFF19o9+7dio6O1o4dO/TNN9+oXLlyeumllzzZRQAAAAAA3PIoSPft21dPPPGEatWqpZiYGN15550qWrSojh49ql9//VUTJ07U0aNH9fLLL9ueu2nTptqyZYs2bNigX3/9VWfOnFHhwoV177336qmnnlKLFi1cxvv4+Gju3LkaO3aspk+frkmTJqlgwYJ67LHH9NJLL6lIkSKe7CIAAAAAAG45jLv7V2XB6NGjNXr0aKWmprq0G2Pk6+urYcOGaejQodlS5PWUmJio0NBQJSQkePUVvDuOiMrpEgAAudTqc2NyugQAQC4UP7Z1TpeQKTtZ0KMVaUkaOnSoOnfurBkzZuiPP/5QQkKCQkNDVaNGDXXu3FkVKlTwdGoAAAAAALyWx0FaunSu9LBhw7KrFgAAAAAAvJ5HV+0GAAAAAOBmdU0r0qtXr9aaNWt06tSpdOdKS5LD4bghz5MGAAAAACAjHgXpkydPql27doqNjVVm1yojSAMAAAAAchuPgnRMTIx+++03NWnSRN26dVPp0qXl53dNi9sAAAAAANwQPEq/3333nerVq6fFixfL4XBkd00AAAAAAHgtjy42dvbsWTVu3JgQDQAAAAC46XgUpGvWrKn4+PhsLgUAAAAAAO/nUZAePny45s2bp5UrV2Z3PQAAAAAAeDWPzpE+fPiwWrdurejoaD3yyCOqVauWQkJC3I7t2rXrNRUIAAAAAIA3cZjM7l+VAR8fHzkcDpdbX115vrQxRg6Hw+39pb1ZYmKiQkNDlZCQkOEfB7xBxxFROV0CACCXWn1uTE6XAADIheLHts7pEjJlJwt6tCI9depUjwoDAAAAAOBG51GQ7tatW3bXAQAAAADADcGji40BAAAAAHCz8mhF2ik+Pl4zZszQxo0blZiYqJCQENWsWVOPPPKIIiIisqlEAAAAAAC8h8dB+o033tDAgQN18eJFl4uOzZ49W6NGjdKrr76q5557LluKBAAAAADAW3h0aPd3332nfv36KTQ0VC+99JJ+//137d69WytWrNArr7yi0NBQxcTE6Pvvv8/uegEAAAAAyFEerUhPnDhRBQsW1Pr161W6dGmrPTw8XPXr19cjjzyi2267TRMnTlTr1t59iXMAAAAAAOzwaEV6/fr1euihh1xC9OXKlCmjjh07at26dddUHAAAAAAA3sajIH3+/HkFBQVlOiY4OFjnz5/3qCgAAAAAALyVR0G6UqVKmj9/vi5evOi2/+LFi/ruu+9UqVKlayoOAAAAAABv41GQ7tq1q7Zt26aWLVumO3x77dq1uueee7Rt2zZ169YtW4oEAAAAAMBbeHSxseeee07Lly/XvHnzVK9ePeXLl09FixbV0aNHdebMGRlj1LZtW25/BQAAAADIdTxakfb19dWcOXM0bdo0NWnSRHny5NHevXuVJ08eNW3aVJ988om+/fZb+fh4ND0AAAAAAF7LoxVpp65du6pr167ZVQsAAAAAAF6PJWMAAAAAAGzwKEh/9913uv/++3Xw4EG3/QcPHtT999+vH3/88ZqKAwAAAADA23gUpN955x3t3LlTJUuWdNtfsmRJ7d69W++88841FQcAAAAAgLfxKEhv2rRJ9evXz3RM/fr1tXHjRk+mBwAAAADAa3kUpE+ePKmiRYtmOqZw4cI6fvy4R0UBAAAAAOCtPArSRYoU0bZt2zIds23bNhUsWNCjogAAAAAA8FYeBenGjRtr/vz5+uOPP9z2b9q0SfPmzVN0dPQ1FQcAAAAAgLfxKEgPGjRIknTnnXdq1KhRWrFihfbu3asVK1Zo5MiRatSokXx8fDRkyJBsLRYAAAAAgJzm58lGUVFRmjFjhrp166aRI0dq5MiRVp8xRsHBwfriiy8UFRWVbYUCAAAAAOANPArSktShQwc1atRI06ZN05o1a5SQkKCwsDDVq1dP3bp1U5EiRbKzTgAAAAAAvILHQVqSihYtqoEDB2ZXLQAAAAAAeD2PzpG+0smTJ7Vv377smAoAAAAAAK/mcZBOSEjQc889p2LFiqlIkSIqV66c1bdq1Srde++9WrduXbYUCQAAAACAt/AoSJ88eVL169fXW2+9pTJlyuiWW26RMcbqj4qKUmxsrGbMmJFthQIAAAAA4A08CtIjRozQ9u3b9eWXX2rt2rV68MEHXfoDAwMVHR2tX375JVuKBAAAAADAW3gUpOfNm6c2bdqoY8eOGY6JiIjQ/v37PS4MAAAAAABv5FGQPnTokG699dZMxwQEBCg5OdmjogAAAAAA8FYeBelChQpd9SrdW7duVYkSJTwqCgAAAAAAb+VRkG7cuLHmzp2b4aHbf//9txYsWKC77rrrmooDAAAAAMDbeBSkX3jhBaWmpqphw4aaMWOGjh8/LknasmWLpkyZombNmikgIEADBgzI1mIBAAAAAMhpfp5sVL16dc2cOVNdunRR165dJUnGGFWrVk3GGOXPn1+zZs1SZGRkthYLAAAAAEBO8yhIS9J9992n3bt365NPPtGqVat08uRJhYSEqH79+urRo4cKFy6cnXUCAAAAAOAVPA7SklSwYEH169cvu2oBAAAAAMDreXSOdEaMMYqLi7vqFb0BAAAAALhReRSkv/nmG3Xt2lX//POP1RYfH6+oqChVqVJFERERevjhh5WamppthQIAAAAA4A08CtLvvfeeNm7cqAIFClht/fr10+bNm9W0aVNFRUXpq6++0scff5xthQIAAAAA4A08CtJ///236tWrZ319+vRpff/993rooYe0aNEirV69WrfccgtBGgAAAACQ63gUpE+ePKnixYtbX//222+6ePGiOnXqJEny9/fX3XffrZ07d2ZPlQAAAAAAeAmPgnRISIhOnDhhfb1kyRL5+PioUaNGVpu/v7+Sk5OvvUIAAAAAALyIR0G6SpUqmj9/vk6cOKFTp07p888/V+3atV3Omd6zZ4+KFSuWbYUCAAAAAOANPArSzz77rA4ePKjSpUurbNmyOnTokJ588kmXMStXrlSNGjWypUgAAAAAALyFnycbdejQQe+8846mTJkiSXr44YfVvXt3q3/ZsmVKTExUq1atsqVIAAAAAAC8hUdBWpKefPLJdKvQTtHR0S73mAYAAAAAILfw6NBuAAAAAABuVgRpAAAAAABsIEgDAAAAAGADQRoAAAAAABsI0gAAAAAA2ECQBgAAAADABo+CdM+ePTVp0qTsrgUAAAAAAK/nUZD+/PPPdfTo0eyuBQAAAAAAr+dRkK5QoYIOHTqU3bUAAAAAAOD1PD60+/vvv9eBAweyu54MjRs3Tg6HQw6HQytXrkzXn5iYqJiYGIWHhysgIEAREREaMGCAkpKSrluNAAAAAIDcz8+TjTp06KAlS5bojjvu0MCBA1W3bl0VK1ZMDocj3diyZctec5F//fWXhg8frqCgICUnJ6frT05OVnR0tDZu3KgWLVqoU6dO2rBhg8aPH69ly5Zp+fLlyps37zXXAQAAAACAR0G6fPnycjgcMsbo2WefzXCcw+HQxYsXPS5Oki5cuKBu3bqpZs2aioyM1GeffZZuzKuvvqqNGzdq0KBBGjt2rNU+ePBgjRs3TpMmTdKQIUOuqQ4AAAAAACQPg3TXrl3drj7/G15++WVt3rxZ69ev16uvvpqu3xijyZMnKzg4WEOHDnXpGzp0qN555x1NnjyZIA0AAAAAyBYeBelp06ZlcxnurV+/Xi+//LJGjRqlW2+91e2YuLg4HTx4UC1btlRQUJBLX1BQkBo2bKiFCxdq3759KlOmzPUoGwAAAACQi3l0sbHrISUlRV27dlXNmjU1cODADMfFxcVJkiIjI932O9ud4wAAAAAAuBYerUg7HT58WN988422bt2q5ORkTZkyRZJ07Ngx7d69W9WrV1dgYKBHcw8bNkxxcXFat26dfH19MxyXkJAgSQoNDXXbHxIS4jLuSikpKUpJSbG+TkxM9KheAAAAAMDNweMV6XfffVflypXTM888o7ffftvlcO+jR4/q9ttvd3thsKxYsWKFxo8frxdffFHVqlXztMQsGTNmjEJDQ60Hh38DAAAAADLjUZCeP3++nnnmGVWvXl3z5s3Tk08+6dJftWpVRUVFac6cObbnvnjxorp166aoqCgNHjz4quOdK9EZrTg7V5gzWrEeMmSIEhISrMe+ffts1wwAAAAAuHl4dGj3a6+9prJly2rJkiUKCgrSunXr0o2pXr26fv31V9tzJyUlWecz58mTx+2Y22+/XZL07bffWhchy+gc6KudQx0QEKCAgADbdQIAAAAAbk4eBemNGzeqS5cu6a6SfblSpUrpyJEjtucOCAjQY4895rZv+fLliouL03333aciRYooIiJCkZGRKlmypGJjY5WcnOxSU3JysmJjY1WuXDkO2QYAAAAAZAuPgnRaWpr8/f0zHXP06FGPVnoDAwM1efJkt33du3dXXFychgwZogYNGljtvXr10qhRozR69GiNHTvWah89erSSkpL0/PPP264DAAAAAAB3PArSlStXzvSw7YsXL2r58uWqXr26x4XZMXDgQM2dO1fjxo3Thg0bVKtWLa1fv14//fST6tatq759+16XOgAAAAAAuZ9HFxt75JFHtGHDBo0cOTJdX2pqqv73v/9p165d6tq16zUXmBVBQUFatmyZ+vbtqy1btmjChAnaunWr+vfvr8WLF3t8Cy4AAAAAAK7kMMYYuxtduHBBLVq00PLly1WhQgXlzZtXmzdvVocOHbR27VrFx8erRYsW+vHHH+VwOP6Nuv81iYmJCg0NVUJCgnUPam/UcURUTpcAAMilVp8bk9MlAAByofixrXO6hEzZyYIerUj7+/tr4cKFGjx4sE6cOKG//vpLxhh9/fXXOnnypAYNGqR58+bdcCEaAAAAAICr8egcaenSralefvllvfTSS9q2bZtOnjypkJAQ3XLLLfL19c3OGgEAAAAA8BoeB2knh8OhKlWqZEctAAAAAAB4vWsK0ikpKfrhhx+0YcMGJSQkKDQ0VLfddpvuvfdej259BQAAAACAt/M4SM+bN09PPPGEjh07psuvV+ZwOFS0aFF9+OGH+s9//pMtRQIAAAAA4C08CtKLFy9Whw4d5Ovrq549e6pRo0YqVqyYjhw5ouXLl+uzzz7T/fffr4ULF6pZs2bZXTMAAAAAADnGoyA9fPhwBQYG6vfff1e1atVc+rp27apnn31WDRs21PDhwwnSAAAAAIBcxaPbX23YsEEPPfRQuhDtFBUVpY4dO2r9+vXXVBwAAAAAAN7GoyCdL18+FSlSJNMxRYsWVb58+TwqCgAAAAAAb+VRkL7rrru0aNGiTMcsWrRId999t0dFAQAAAADgrTwK0uPHj9fRo0fVtWtX7du3z6Vv37596tKli44fP67x48dnS5EAAAAAAHgLjy421qVLFxUoUEAzZszQl19+qbJly1pX7d67d69SU1MVFRWlRx991GU7h8OhxYsXZ0vhAAAAAADkBI+C9NKlS63/v3jxonbt2qVdu3a5jNm0aVO67RwOhydPBwAAAACA1/AoSKelpWV3HQAAAAAA3BA8OkcaAAAAAICbFUEaAAAAAAAbCNIAAAAAANhAkAYAAAAAwAaCNAAAAAAANhCkAQAAAACwgSANAAAAAIAN2R6kU1JSdOHCheyeFgAAAAAAr+BRkF6+fLmGDRumU6dOWW0nTpzQPffco+DgYIWGhmrw4MHZVSMAAAAAAF7DoyA9fvx4ff755woLC7Pa+vfvr4ULF6pcuXIKCwvTa6+9plmzZmVXnQAAAAAAeAWPgvSGDRt05513Wl+fO3dOs2bNUosWLbR9+3Zt27ZNZcuW1XvvvZdthQIAAAAA4A08CtInTpxQqVKlrK9XrFihc+fOqUePHpKk/Pnzq02bNtq2bVv2VAkAAAAAgJfwKEgHBgbq9OnT1tdLliyRw+FQdHS01RYcHKx//vnn2isEAAAAAMCL+HmyUcWKFbVgwQKlpKTI4XDoyy+/1K233qrixYtbY/bu3auiRYtmW6EAAAAAAHgDj1akH3/8ce3YsUMVK1bULbfcop07d1qHdTutW7dOt956a7YUCQAAAACAt/AoSD/22GMaMGCAzp49q4SEBD355JPq27ev1b9ixQpt375dzZs3z646AQAAAADwCh4d2u1wODRu3DiNGzfObX/t2rX1zz//KCgo6JqKAwAAAADA23gUpK8mT548ypMnz78xNQAAAAAAOcqjQ7udvv32W3Xs2FFRUVGqWLGi1b5161a9+uqrOnDgwDUXCAAAAACAN/FoRTotLU2dOnXS119/LenS7bDOnj1r9RcoUEAvvPCCUlNTNWTIkOypFAAAAAAAL+DRivSkSZP01VdfqXfv3vrnn3/0v//9z6W/WLFiatSokb7//vtsKRIAAAAAAG/hUZCeNm2a6tatq3fffVchISFyOBzpxlSsWFG7d+++5gIBAAAAAPAmHgXpHTt2qFGjRpmOKVSokE6cOOFRUQAAAAAAeCuPgnRgYKASEhIyHbNnzx6FhYV5Mj0AAAAAAF7LoyB92223aeHChTp37pzb/pMnT2rBggVq0KDBNRUHAAAAAIC38ShIP/vss9q/f786dOig/fv3u/Tt3LlT7du3V0JCgp599tlsKRIAAAAAAG/h0e2v2rZtq0GDBmncuHEKDw9XUFCQJKlo0aI6ceKEjDEaOnSomjVrlq3FAgAAAACQ0zxakZakMWPGaOHChWrTpo3y5csnX19fpaWlqVWrVvrxxx81cuTI7KwTAAAAAACv4NGKtNPdd9+tu+++O7tqAQAAAADA63m8Ig0AAAAAwM3omlakU1NTtX//fh08eFAXLlxwO6Zx48bX8hQAAAAAAHgVj4J0WlqaXnnlFb3xxhs6efJkpmNTU1M9KgwAAAAAAG/kUZAeMmSIXnvtNRUtWlQ9evRQiRIl5Od3TYvbAAAAAADcEDxKv5988okqV66sNWvWKDg4OLtrAgAAAADAa3l0sbGkpCS1bt2aEA0AAAAAuOl4FKSjoqJ08ODB7K4FAAAAAACv51GQfuGFFzRnzhytX78+u+sBAAAAAMCreXSOdOvWrTVt2jTdc889uu+++1SjRg2FhIS4Hdu1a9drKhAAAAAAAG/iUZBOSUnR/Pnzdfz4cU2ZMkWS5HA4XMYYY+RwOAjSAAAAAIBcxaMgHRMToxkzZigqKkoPPPAAt78CAAAAANw0PEq/X331lWrXrq0VK1YQoAEAAAAANxWPLjZ27tw5NW3alBANAAAAALjpeBSka9eurR07dmR3LQAAAAAAeD2PgvQrr7yiBQsW6LvvvsvuegAAAAAA8GoeHZv9888/q0mTJmrbtq2aNWuW4e2vHA6Hhg4des1FAgAAAADgLRzGGGN3Ix+frC1kOxwOpaam2i4qJyUmJio0NFQJCQkZ3hvbG3QcEZXTJQAAcqnV58bkdAkAgFwofmzrnC4hU3ayoEcr0kuWLPGoMAAAAAAAbnQeBeno6OjsrgMAAAAAgBuCRxcbAwAAAADgZnXNN4Let2+fDh48qJSUFLf9jRs3vtanAAAAAADAa3gcpOfPn68BAwYoLi4u03E32sXGAAAAAADIjEeHdi9dulTt27dXUlKSnnnmGRlj1LhxYz3xxBO69dZbZYxR69atNWzYsOyuFwAAAACAHOVRkB47dqyCg4O1bt06vfHGG5Kkpk2b6r333tOff/6pl19+WYsXL1bbtm2ztVgAAAAAAHKaR0F6zZo1ateunYoVK2a1paWlWf8/ZMgQ3XbbbaxIAwAAAAByHY+C9JkzZ1SqVCnr64CAACUmJrqMadCggWJjY6+tOgAAAAAAvIxHQbp48eI6duyY9XWpUqW0efNmlzEnTpzw6EJj586dU0xMjBo3bqySJUsqb968Kl68uBo2bKipU6fqwoUL6bZJTExUTEyMwsPDFRAQoIiICA0YMEBJSUn2dw4AAAAAgEx4FKRr1Kihv/76y/q6adOmWrJkib744gslJydr4cKFmjVrlqKiomzPnZSUpPfee08Oh0OtW7dWTEyM2rdvrwMHDqhnz55q06aNy2HkycnJio6O1qRJk1SlShX169dPlStX1vjx49WsWTOdO3fOk10EAAAAAMAtj25/dd999+mZZ57Rnj17FB4erueff16zZ8/Wo48++n8T+/nppZdesj13wYIFlZCQoDx58ri0X7x4UXfffbd++ukn/fjjj2rdurUk6dVXX9XGjRs1aNAgjR071ho/ePBgjRs3TpMmTdKQIUM82U0AAAAAANLxaEW6Z8+eOnPmjMLDwyVJ5cqV05o1a9SnTx+1aNFCjz/+uFatWqXGjRvbL8jHJ12Ili4F8/bt20uSduzYIUkyxmjy5MkKDg7W0KFDXcYPHTpUwcHBmjx5su0aAAAAAADIiEcr0u5UqFBB77zzTnZNl05aWpoWLFggSapWrZokKS4uTgcPHlTLli0VFBTkMj4oKEgNGzbUwoULtW/fPpUpU+Zfqw0AAAAAcPPwKEj7+vrq4Ycf1owZM7K7Hsv58+f1yiuvyBijEydOaPHixdq6dat69Oih5s2bS7oUpCUpMjLS7RyRkZFauHCh4uLiCNIAAAAAgGzhUZAOCQn514Pp+fPnNXLkSOtrh8Oh//3vfxozZozVlpCQIEkKDQ3NsM7Lx7mTkpKilJQU6+srb+MFAAAAAMDlPDpHul69etq0aVN21+IiODhYxhilpqZq3759eueddzR58mQ1adIkW8PumDFjFBoaaj1YuQYAAAAAZMajID1ixAj98ssv+vTTT7O7nnR8fHxUunRpPfnkk/rwww8VGxurl19+WdL/rURntOLsDNwZrVhL0pAhQ5SQkGA99u3bl817AAAAAADITTw6tPvnn39WkyZN1KNHD7311luqW7euihUrJofD4TLO4XCku5r2tWjRooUkaenSpZL+79xo57nSV7raOdSSFBAQoICAgGyrEQAAAACQu3kUpEeMGGH9/7p167Ru3Tq347I7SB88eFCS5O/vL+lSQC5ZsqRiY2OVnJzscuXu5ORkxcbGqly5chyuDQAAAADINh4F6SVLlmR3HZa///5bERERypcvn0v7mTNnFBMTI0m69957JV0K6r169dKoUaM0evRojR071ho/evRoJSUl6fnnn//XagUAAAAA3HyyFKTnzZunKlWqqFKlSpKk6Ojof62gWbNmaeLEibrzzjsVERGhkJAQHThwQD/++KNOnDihRo0aqV+/ftb4gQMHau7cuRo3bpw2bNigWrVqaf369frpp59Ut25d9e3b91+rFQAAAABw88nSxcbat2+vL7/80vq6fPnyevPNN/+Vgtq0aaOHH35Ye/fu1RdffKEJEyboxx9/VFRUlD744AP98ssvCgwMtMYHBQVp2bJl6tu3r7Zs2aIJEyZo69at6t+/vxYvXuwyFgAAAACAa5WlFWl/f39duHDB+jo+Pl6nTp36VwqqU6eO6tSpY2ub0NBQTZo0SZMmTfpXagIAAAAAwClLK9Jly5bVb7/9ptTUVKvtyit0AwAAAABwM8jSinTnzp01atQoFSxYUIUKFZIkTZo0SVOnTs10O4fDoZ07d157lQAAAAAAeIksBekXX3xRefPm1ffff6+DBw/K4XDIGCNjTKbbXa0fAAAAAIAbTZaCtJ+fnwYPHqzBgwdLknx8fNSvXz8NGzbsXy0OAAAAAABvk6VzpK80fPhwNWnSJJtLAQAAAADA+2VpRfpKw4cPz+46AAAAAAC4IXi0Ig0AAAAAwM2KIA0AAAAAgA0EaQAAAAAAbCBIAwAAAABgA0EaAAAAAAAbCNIAAAAAANhAkAYAAAAAwAaCNAAAAAAANhCkAQAAAACwgSANAAAAAIANBGkAAAAAAGwgSAMAAAAAYANBGgAAAAAAGwjSAAAAAADYQJAGAAAAAMAGgjQAAAAAADYQpAEAAAAAsIEgDQAAAACADQRpAAAAAABsIEgDAAAAAGADQRoAAAAAABsI0gAAAAAA2ECQBgAAAADABoI0AAAAAAA2EKQBAAAAALCBIA0AAAAAgA0EaQAAAAAAbCBIAwAAAABgA0EaAAAAAAAbCNIAAAAAANhAkAYAAAAAwAaCNAAAAAAANhCkAQAAAACwgSANAAAAAIANBGkAAAAAAGwgSAMAAAAAYANBGgAAAAAAGwjSAAAAAADYQJAGAAAAAMAGgjQAAAAAADYQpAEAAAAAsIEgDQAAAACADQRpAAAAAABsIEgDAAAAAGADQRoAAAAAABsI0gAAAAAA2ECQBgAAAADABoI0AAAAAAA2EKQBAAAAALCBIA0AAAAAgA0EaQAAAAAAbCBIAwAAAABgA0EaAAAAAAAbCNIAAAAAANhAkAYAAAAAwAaCNAAAAAAANhCkAQAAAACwgSANAAAAAIANBGkAAAAAAGwgSAMAAAAAYANBGgAAAAAAGwjSAAAAAADYQJAGAAAAAMAGrwvSBw4c0Ouvv64WLVqobNmyypMnj4oXL64OHTpo1apVbrdJTExUTEyMwsPDFRAQoIiICA0YMEBJSUnXuXoAAAAAQG7ndUH6rbfeUr9+/bRr1y61aNFC/fv315133qm5c+fqjjvu0MyZM13GJycnKzo6WpMmTVKVKlXUr18/Va5cWePHj1ezZs107ty5HNoTAAAAAEBu5JfTBVypXr16Wrp0qaKjo13af/31VzVv3lxPPvmk2rVrp4CAAEnSq6++qo0bN2rQoEEaO3asNX7w4MEaN26cJk2apCFDhlzXfQAAAAAA5F4OY4zJ6SKyqmXLlvrpp5+0Zs0a1alTR8YYlS5dWomJiTp8+LCCgoKsscnJySpevLiKFi2qnTt3Zvk5EhMTFRoaqoSEBIWEhPwbu5EtOo6IyukSAAC51OpzY3K6BABALhQ/tnVOl5ApO1nQ6w7tzoy/v78kyc/v0kJ6XFycDh48qIYNG7qEaEkKCgpSw4YNtWvXLu3bt++61woAAAAAyJ1umCC9d+9eLVq0SCVKlFD16tUlXQrSkhQZGel2G2e7c5w7KSkpSkxMdHkAAAAAAJCRGyJIX7hwQV26dFFKSorGjRsnX19fSVJCQoIkKTQ01O12zuV45zh3xowZo9DQUOtRpkyZbK4eAAAAAJCbeH2QTktLU/fu3bV8+XI9/vjj6tKlS7bOP2TIECUkJFgPDgMHAAAAAGTG667afbm0tDT17NlTn3/+uR599FG9//77Lv3OleiMVpydh2lntGItSQEBAdYVwAEAAAAAuBqvDdJpaWnq0aOHPv30U3Xq1EnTpk2Tj4/rAvrVzoG+2jnUAAAAAADY5ZWHdl8eoh966CFNnz7dOi/6cpGRkSpZsqRiY2OVnJzs0pecnKzY2FiVK1eO854BAAAAANnG64K083DuTz/9VA8++KA+++wztyFakhwOh3r16qWkpCSNHj3apW/06NFKSkrS448/fj3KBgAAAADcJLzu0O5Ro0bpk08+UXBwsCpVqqSXXnop3Zh27dqpZs2akqSBAwdq7ty5GjdunDZs2KBatWpp/fr1+umnn1S3bl317dv3+u4AAAAAACBX87ogHR8fL0lKSkrSyy+/7HZMRESEFaSDgoK0bNkyjRgxQrNnz9aSJUtUokQJ9e/fX8OHD1dgYOB1qhwAAAAAcDNwGGNMThfhTRITExUaGqqEhATrPtTeqOOIqJwuAQCQS60+NyanSwAA5ELxY1vndAmZspMFve4caQAAAAAAvBlBGgAAAAAAGwjSAAAAAADYQJAGAAAAAMAGgjQAAAAAADYQpAEAAAAAsIEgDQAAAACADQRpAAAAAABsIEgDAAAAAGADQRoAAAAAABsI0gAAAAAA2ECQBgAAAADABoI0AAAAAAA2EKQBAAAAALCBIA0AAAAAgA0EaQAAAAAAbCBIAwAAAABgA0EaAAAAAAAbCNIAAAAAANhAkAYAAAAAwAaCNAAAAAAANhCkAQAAAACwgSANAAAAAIANBGkAAAAAAGwgSAMAAAAAYANBGgAAAAAAGwjSAAAAAADYQJAGAAAAAMAGgjQAAAAAADYQpAEAAAAAsIEgDQAAAACADQRpAAAAAABsIEgDAAAAAGADQRoAAAAAABsI0gAAAAAA2ECQBgAAAADABoI0AAAAAAA2EKQBAAAAALCBIA0AAAAAgA0EaQAAAAAAbCBIAwAAAABgA0EaAAAAAAAbCNIAAAAAANhAkAYAAAAAwAaCNAAAAAAANhCkAQAAAACwgSANAAAAAIANBGkAAAAAAGwgSAMAAAAAYANBGgAAAAAAGwjSAAAAAADYQJAGAAAAAMAGgjQAAAAAADYQpAEAAAAAsIEgDQAAAACADQRpAAAAAABsIEgDAAAAAGADQRoAAAAAABsI0gAAAAAA2ECQBgAAAADABoI0AAAAAAA2EKQBAAAAALCBIA0AAAAAgA0EaQAAAAAAbCBIAwAAAABgA0EaAAAAAAAbCNIAAAAAANhAkAYAAAAAwAaCNAAAAAAANnhlkP7ss8/Uu3dv1alTRwEBAXI4HJo2bVqG4xMTExUTE6Pw8HAFBAQoIiJCAwYMUFJS0vUrGgAAAABwU/DL6QLcefHFF7Vnzx4VLlxYJUqU0J49ezIcm5ycrOjoaG3cuFEtWrRQp06dtGHDBo0fP17Lli3T8uXLlTdv3utYPQAAAAAgN/PKFenJkycrPj5ex44dU58+fTId++qrr2rjxo0aNGiQFi5cqLFjx2rhwoUaNGiQ1qxZo0mTJl2nqgEAAAAANwOvDNJ33XWXwsPDrzrOGKPJkycrODhYQ4cOdekbOnSogoODNXny5H+rTAAAAADATcgrg3RWxcXF6eDBg2rYsKGCgoJc+oKCgtSwYUPt2rVL+/bty6EKAQAAAAC5zQ0fpCUpMjLSbb+z3TnOnZSUFCUmJro8AAAAAADIyA0dpBMSEiRJoaGhbvtDQkJcxrkzZswYhYaGWo8yZcpkf6EAAAAAgFzjhg7S2WHIkCFKSEiwHhwGDgAAAADIjFfe/iqrnCvRGa04Ow/TzmjFWpICAgIUEBCQ/cUBAAAAAHKlG3pF+mrnQF/tHGoAAAAAAOy64YN0yZIlFRsbq+TkZJe+5ORkxcbGqly5cpz3DAAAAADINjd0kHY4HOrVq5eSkpI0evRol77Ro0crKSlJjz/+eA5VBwAAAADIjbzyHOnJkyfrt99+kyT9+eefVtvSpUslSXfeead69eolSRo4cKDmzp2rcePGacOGDapVq5bWr1+vn376SXXr1lXfvn1zYhcAAAAAALmUVwbp3377TZ988olLW2xsrGJjY62vnUE6KChIy5Yt04gRIzR79mwtWbJEJUqUUP/+/TV8+HAFBgZe19oBAAAAALmbwxhjcroIb5KYmKjQ0FAlJCRY96H2Rh1HROV0CQCAXGr1uTE5XQIAIBeKH9s6p0vIlJ0seEOfIw0AAAAAwPVGkAYAAAAAwAaCNAAAAAAANhCkAQAAAACwgSANAAAAAIANBGkAAAAAAGwgSAMAAAAAYANBGgAAAAAAGwjSAAAAAADYQJAGAAAAAMAGgjQAAAAAADYQpAEAAAAAsIEgDQAAAACADQRpAAAAAABsIEgDAAAAAGADQRoAAAAAABsI0gAAAAAA2ECQBgAAAADABoI0AAAAAAA2EKQBAAAAALCBIA0AAAAAgA0EaQAAAAAAbCBIAwAAAABgA0EaAAAAAAAbCNIAAAAAANhAkAYAAAAAwAaCNAAAAAAANhCkAQAAAACwgSANAAAAAIANBGkAAAAAAGwgSAMAAAAAYANBGgAAAAAAGwjSAAAAAADYQJAGAAAAAMAGgjQAAAAAADYQpAEAAAAAsIEgDQAAAACADQRpAAAAAABsIEgDAAAAAGADQRoAAAAAABsI0gAAAAAA2ECQBgAAAADABoI0AAAAAAA2EKQBAAAAALCBIA0AAAAAgA0EaQAAAAAAbCBIAwAAAABgA0EaAAAAAAAbCNIAAAAAANhAkAYAAAAAwAaCNAAAAAAANhCkAQAAAACwgSANAAAAAIANBGkAAAAAAGwgSAMAAAAAYANBGgAAAAAAGwjSAAAAAADYQJAGAAAAAMAGgjQAAAAAADYQpAEAAAAAsIEgDQAAAACADQRpAAAAAABsIEgDAAAAAGADQRoAAAAAABsI0gAAAAAA2ECQBgAAAADABoI0AAAAAAA2EKQBAAAAALAh1wTpNWvW6N5771VYWJiCgoLUoEEDzZo1K6fLAgAAAADkMn45XUB2WLJkiVq2bKm8efPq4YcfVv78+TV79mw99NBD2rdvn/r375/TJQIAAAAAcokbfkX64sWLevzxx+Xj46Ply5frww8/1IQJE7Rp0yZVqlRJzz//vPbs2ZPTZQIAAAAAcokbPkj/8ssv2rlzpzp37qyaNWta7aGhoXr++ed1/vx5ffLJJzlXIAAAAAAgV7nhg/TSpUslSS1atEjX17JlS0nSsmXLrmdJAAAAAIBc7IYP0nFxcZKkyMjIdH3FixdXcHCwNQYAAAAAgGt1w19sLCEhQdKlQ7ndCQkJsca4k5KSopSUlHTzJSYmZmOV2e9CSmpOlwAAyKXSUs7kdAkAgFzI2zOWsz5jzFXH3vBB+lqNGTNGI0eOTNdepkyZHKgGAABv0DGnCwAA5EKhr+d0BVlz+vTpDBdqnW74IO3cwYxWnRMTE1WgQIEMtx8yZIhiYmKsr9PS0nTy5EkVKlRIDocje4sFcN0lJiaqTJky2rdvn0JCQnK6HABALsJnDJC7GGN0+vRplSxZ8qpjb/gg7Tw3Oi4uTrVr13bpO3z4sJKSklSvXr0Mtw8ICFBAQIBLW1hYWLbXCSBnhYSE8EsOAOBfwWcMkHtcbSXa6Ya/2Fh0dLQk6aeffkrXt3DhQpcxAAAAAABcK4fJypnUXuzixYuqXLmyDhw4oJUrV1r3kk5ISFC9evUUHx+vbdu2KSIiIkfrBJAzEhMTFRoaqoSEBFYLAADZis8Y4OZ1wx/a7efnp8mTJ6tly5Zq3LixHn74YeXPn1+zZ8/Wnj17NH78eEI0cBMLCAjQ8OHD053CAQDAteIzBrh53fAr0k6rV6/W8OHD9fvvv+vChQuqXr26YmJi9NBDD+V0aQAAAACAXCTXBGkAAAAAAK6HG/5iYwAAAAAAXE8EaQDIIfHx8XI4HOrevXtOlwIAuEk4HA41adIkp8sAbngEaQDpJCcn65VXXlGtWrUUHBysgIAAlS5dWo0aNdKQIUO0c+fOnC4RAHAD6dmzpxwOhwoVKqSUlJScLgcArtkNf9VuANnr9OnTuvPOO/XHH3+oYsWKevTRR1WoUCEdP35cq1ev1tixY1WhQgVVqFAhp0sFANwATp8+rVmzZsnhcOjkyZOaM2cOF4MFcMMjSANw8frrr+uPP/5Qr1699OGHH8rhcLj07969m9UEAECWzZw5U8nJyYqJidHrr7+uKVOmEKQB3PA4tBuAixUrVkiSnn766XQhWpLKlSunKlWqSJLS0tIUHh6e6aF6jRs3lp+fn/bv3y9JmjZtmhwOh6ZNm6affvpJd9xxh/Lly6dChQqpW7duOnHihNt5Nm3apEceeUSlS5dWQECASpQooVatWmn+/PlX3afLz0XesmWL2rRpo7CwMBUoUECdOnXS8ePHrX1v3ry5QkJCVKBAAfXq1UvJyclu55w6darq16+v4OBgBQcHq379+po2bZrbsampqRo3bpwqVqyovHnzqmLFihozZozS0tIyrPno0aPq16+fKlasqICAABUuXFgdOnTQX3/9ddX9BQBvMmXKFPn5+WngwIFq2rSpFi9erD179rgdGxcXpx49eqhcuXIKCAhQwYIFVaNGDfXt21fOG83ceeed8vPz06FDh9zO0bVrVzkcDuvzbOnSpXI4HBoxYoTWrl2ru+++W/nz51doaKjat2+v+Ph4t/Ps2rVLTzzxhFVL0aJF1aRJkwz/rb+S81zkAwcOqHPnzipcuLDy58+v1q1ba9euXZKkLVu2qF27dipYsKDy58+vBx54QEeOHHE73/z589W0aVOFhoYqMDBQNWrU0MSJE3Xx4kW34ydPnqxq1aopb968KlOmjAYOHKhz585lWO/p06c1fPhwVa1aVYGBgQoLC1PLli3122+/ZWl/gZuOAYDLPProo0aSmTlzZpbGjxo1ykgyM2bMSNe3detWI8m0bt3aaps6daqRZNq3b2/y5MljOnToYPr372/q1q1rJJmGDRumm+frr782efLkMf7+/ub+++83Q4YMMY899pipVq2aadu27VVr3L17t5FkGjdubMLCwsxdd91l+vfvb6Kjo63n/PXXX01gYKC57777TP/+/U3t2rWNJNOjR4908/33v/81kkypUqXMs88+a5599llTqlQpI8k8++yz6cb37NnTSDLlypUzMTEx5qmnnjKFCxc2bdq0MZJMt27dXMbv2LHDlC5d2kgyLVq0MP379zddunQx+fLlM0FBQWblypVX3WcA8AabN282ksy9995rjDHmk08+MZLM8OHD0409cOCACQsLM/7+/qZdu3Zm0KBB5plnnjEtW7Y0/v7+5sKFC8YYYz799FMjybz88svp5vjnn39MYGCgqVq1qtW2ZMkSq4bAwEBz7733mv79+5tmzZoZSaZChQrm7NmzLvP8+uuvJiQkxDgcDtOqVSszePBg07t3b1OvXj1Ts2bNLO27JBMVFWUiIiJMgwYNTExMjPXvfvny5c2ff/5pwsLCTPPmzU3//v1NkyZNjCTTtGnTdHNNmDDBSDIFCxY0ffr0Mf379zeRkZFGkmnXrp1JS0tzGe/8bC5WrJh55plnTL9+/UzZsmWt54+OjnYZf+LECVO1alXrM7Fv376mZ8+eplChQsbPz898++23Wdpn4GZCkAbgYu7cuUaSyZ8/v+nfv79ZuHChOX78eIbjDxw4YPz8/EyTJk3S9f3vf/8zksycOXOsNmeQ9vPzM7/99pvVfvHiReuXiBUrVljthw8fNkFBQSYoKMisX78+3XPs27fvqvvkDNKSzOuvv261p6WlmXvvvddIMmFhYS51nj9/3kRFRRk/Pz9z+PBhq33ZsmVGkrnlllvMqVOnrPaTJ0+aSpUqGUlm+fLlVrvzF7gaNWqYpKQkq33//v2mcOHCboP0HXfcYXx9fc2CBQtc2rdt22by589vqlevftV9BgBvEBMTYySZL774whhjzOnTp01QUJApW7asSU1NdRn75ptvpvt32unEiRPW/589e9YULFjQlC9fPl2AfPvtt9PN4fx3WJL58ssvXcZ36dLFpT5jjDl37pwpVaqU8fHxMT/++GO6WrLyuWOMsZ6zX79+Lu1PPvmk9bmT0WfSunXrrPYdO3YYPz8/U7RoUbN3716XOu+8804jyXz66adWe1xcnPHz8zOlSpUyR44csdoTEhJM5cqV3Qbpzp07G0nmo48+cmk/cuSIKVOmjClSpEi6PzYANzuCNIB0JkyYYIKDg61fApx/sX/66afN9u3b041v3769cTgcJi4uzmo7f/68KVq0qClRooS1imDM/wXprl27ppvH2ffmm29abePGjTOSzLBhwzzeH2eQrlChQrpfupwrG+5WAJx/0f/ll1+sNufqsrsV+xkzZhhJpmfPnlZbjx49jCQze/bsdONHjx6dLkivX78+3RyXc/5S+ueff151vwEgJ50/f94UKVLEhISEuIQw55FPCxcudBnvDNIffPDBVefu16+fkWQWLVrk0n7bbbeZgIAAl+DtDNKNGzdON4+zLyYmxmqbOXNmhp9TdkgywcHBJjk52aV9+fLlV/1M+vjjj60252fRuHHj0j1HbGyskWSaNWtmtY0cOdJIMhMmTEg3fvr06emC9LFjx4yvr6/LHJdzfl/mz5+fpf0GbhZcbAxAOjExMXr88ce1YMEC/f7771q7dq1WrVqld955R1OmTNHMmTN13333WeN79+6tb7/9VpMnT9bYsWMlSfPmzdPRo0f1/PPPy88v/T81tWvXTtdWunRpSdKpU6esttWrV0uSWrRocc37FRUVle687xIlSkiSatasmW68s+/gwYNW24YNGyTJ7T04mzZtKknauHGj1bZp0yZJUqNGjdKNd9e2cuVKSdKRI0c0YsSIdP1bt261/lutWrV0/QDgLebOnatjx47pscceU968ea32rl276rPPPtOUKVNc/m3/z3/+oyFDhujpp5/W4sWL1apVK0VHR6t8+fLp5n7iiSc0adIkffTRR2revLkkad26ddqwYYM6d+6sggULptsmJz53IiMjlS9fPpc252dLZp9JWf3cuf3225U3b95r+txZs2aNUlNTlZKS4vZzJy4uTtKlz502bdqk6wduVgRpAG7lz59fDz74oB588EFJUkJCgp5//nm9++67euyxx3TgwAHlyZNH0qVfNsqVK6dPPvlEL730kvz8/DR58mQ5HA499thjbucPCQlJ1+YM3KmpqVZbQkKCJKlUqVLXvE+ZPWdmfRcuXLDaEhMT5ePjoyJFiqQbX6xYMTkcDiUmJlptCQkJ8vHxUeHChd2Ov9LJkyclSd9//72+//77DPclo4ugAYC3mDJliqRLwflyzZs3V6lSpTR37lydPHnSCr0RERFauXKlRowYoR9++EGzZs2SJFWpUkWjRo2yPo+cbdHR0ZozZ45OnDihQoUKafLkyZKkxx9/3G09N/LnjuT+M8PhcKhYsWI6cOCA1easv2jRounGZ/a5Exsbq9jY2Az3hc8dwBVX7QaQJaGhoXr77bcVHh6u48eP688//7T6HA6HnnjiCR0+fFjz58/Xvn379NNPP6l58+ZuVxLsCAsLkySXXxJyUkhIiNLS0nTs2LF0fUePHpUxxuWXo9DQUKWlpVlXBr+cuyuzOrd96623ZC6dfuP20a1bt2zcKwDIXs7PAUmKjo6Ww+GwHr6+vjpw4IBSUlL02WefuWxXrVo1ff311zp58qRWrFihYcOG6fDhw3rooYfShbw+ffooJSVFn376qc6cOaMvvvhCkZGRbldu7fDGzx3J/WeGMUZHjhxJ97kjXfpMulJmnzv9+/fP9HNn+PDh2bI/QG5BkAaQZQ6HQ0FBQW77evToIX9/f02ePFkff/yx0tLSMlwVsKNevXqSZP1CltNuu+02SZdup3IlZ9vlh4nXqFFDkvTrr7+mG++urX79+pL+7zZkAHAjmjZtmtLS0nTnnXfqscceS/dw/jHQuWp9JX9/fzVo0EAjR47Um2++KWOMvvvuO5cx999/v4oUKaLJkyfrq6++UkJCgnr16nXNtd9InzurVq3SuXPnrulzp27dui63CwOQNQRpAC4++OADrVmzxm3fnDlztGXLFoWFhaU7P7dYsWJq166dFixYoPfee0+FCxdWu3btrrmebt26KTg4WBMmTHA5B8zpeq8YOH/5GzlyZLpDuEeOHOkyRpK6dOkiSRo1apTLYXEHDhzQG2+8kW7+evXqqX79+vriiy80c+bMdP1paWlatmxZ9uwMAPwLjDGaOnWqHA6HPvnkE02ePDndY9q0abr99tv1xx9/aO3atZIuneN8+b+rTs5V1MvPs5akPHnyqHv37vr777/1/PPPy9/fX927d7/m+u+77z6VLl1an332mRYuXJiu/3p/7nTu3Fl+fn6aOHGiy7nT58+f16BBgyTJZb87d+4sX19fTZw40WVVOjExUS+99FK6+YsXL66OHTvq999/12uvvWbdr/tyq1at0pkzZ7Jxr4AbH+dIA3Dx448/qk+fPqpYsaIaNmyokiVLKjk5WRs2bNCvv/4qHx8fvfvuuwoICEi3bZ8+ffTVV1/pyJEj6t+/v3UO9bUoWrSoPv30Uz388MOqV6+e7rvvPlWuXFnHjx/XqlWrFBERoTlz5lzz82RV48aN9d///ldvvfWWqlWrpg4dOsgYo9mzZ2v//v169tln1bhxY2t806ZN1aNHD02dOlXVq1dX+/btlZKSopkzZ6pBgwbpVlgk6YsvvlDTpk318MMP6/XXX1etWrUUGBiovXv3asWKFTp27JjOnTt33fYZAOz45ZdftHv37gwvFObUo0cPrVixQlOmTFGdOnU0ffp0ffDBB2rcuLEqVKigkJAQ/f333/rhhx9UsGBB9ejRI90cvXv31vjx43Xw4EF16NDB7XnBdgUEBGjWrFlq1aqV7rnnHrVq1Uo1atRQYmKiNm7cqDNnzlgXALseKlSooHHjxql///6KiopSx44dFRQUpPnz52vbtm1q27atHn30UWt8xYoVNWzYMA0fPtwa7+fnp9mzZysqKkrbtm1L9xzvvvuutm3bpoEDB2r69Om6/fbbFRYWpn379mnt2rWKi4vToUOH0l04DbiZEaQBuBg3bpwaNmyon3/+WcuXL9ehQ4ckXbroSrdu3fTf//7X7ZVPpUuhsWzZstq7d2+2HF7n1L59e61atUpjxozRsmXLNG/ePBUuXFg1a9bMlsPH7XrzzTd122236b333tOHH34oSapatapGjRrl9he9jz76SJUqVdJHH32kt99+W6VLl1ZMTIw6duzoNkiXK1dOGzZs0MSJEzVnzhxNnTpVvr6+KlGihBo3bqwHHnjgX99HAPCU83Dtq60OP/TQQ3ruuef0xRdfaOLEierUqZPOnTun2NhYrV69WikpKSpdurSefPJJDRgwQGXLlk03R4UKFdSwYUP99ttv2fp5cPvtt2v9+vUaM2aMFi5cqEWLFqlAgQK69dZb1adPn2x7nqyKiYlRxYoVNXHiRH322Wc6f/68KlWqpAkTJujZZ59Nd/XvYcOGqWTJkpo0aZI++OADFS1aVA8//LBGjRrlNgwXLFhQv//+u95++23NnDlTM2bMUFpamooXL64aNWpo6NChbi+aCdzMHMbd8RsA4IFDhw6pbNmyuv3227V8+fKcLgcAkMudO3dOpUuXVnBwsHbt2iUfH85aBHB98K8NgGzz+uuv6+LFi3ryySdzuhQAwE1g6tSpOnHihHr37k2IBnBdsSIN4JokJCTovffe0549ezR58mRVqlRJf/zxh3x9fXO6NABALjV27FgdO3ZMH3zwgYKCgrR9+3brtk8AcD0QpAFck/j4eJUrV0558+ZVgwYN9P7776ty5co5XRYAIBdzOBzy9/dXjRo19NZbb6lBgwY5XRKAmwxBGgAAAAAAGziZBAAAAAAAGwjSAAAAAADYQJAGAAAAAMAGgjQAAAAAADYQpAEAAAAAsIEgDQBAJrp37y6Hw6H4+PhrmiciIkIRERHZUlN2io+Pl8PhUPfu3bN13mnTpsnhcGjatGnZOi8AAN6AIA0AyPWcYbFVq1YZjlm6dKkcDof69OlzHSvDtXA4HGrSpInbPoI8AODf5JfTBQAA4M3GjBmjwYMHq1SpUjldyr+iVKlS2rJli0JDQ3O6FAAAbhgEaQAAMlGiRAmVKFEip8v41/j7+6tKlSo5XQYAADcUDu0GACATGZ0jffHiRY0ZM0YVKlRQ3rx5VbFiRY0ZM0a7du3K9JzjpKQkPffccypZsqQCAgIUFRWlr7/+2u3Y8+fPa+LEiapVq5aCgoKUP39+NWrUSPPmzcuwzl27dmnChAm69dZbFRAQcNVznzM6R/rQoUN67rnnFBkZqcDAQIWFhemWW25Rnz59lJCQkOmcV5o7d67q1aunfPnyqUiRIurZs6eOHDniduzu3bvVq1cvlS1bVgEBASpRooS6d++uPXv2WGOch+FL0rJly+RwOKzHtGnT1L17d/Xo0UOS1KNHD5f+y50+fVrDhw9X1apVrX1s2bKlfvvtt3R1NWnSRA6HQ+fOndOLL76oChUqyN/fXyNGjLD1WgAAcgdWpAEA8EDPnj01ffp0lS9fXk8//bRSUlI0adIkrVixIsNtLly4oBYtWuiff/5Rhw4ddObMGX355Zfq2LGjFixYoBYtWlhjU1JS1KpVKy1dulQ1a9bUY489pgsXLuj7779X27Zt9dZbb+mZZ55J9xz//e9/tXLlSrVu3Vr/+c9/VLRoUdv7dubMGTVs2FDx8fFq0aKF2rdvr/Pnz2v37t2aPn26/ve//2X5UPDZs2dr4cKFeuCBB3TXXXdp5cqVmjp1qn799VetXr1aBQoUsMauWrVKLVu2VHJystq0aaPIyEjFx8drxowZ+vHHH7VixQqVL19eERERGj58uEaOHKnw8HCXPwLUrFlTYWFhOnXqlObOnau2bduqZs2a6eo6efKkGjdurM2bN6thw4bq06ePEhMTNXfuXDVt2lRfffWV2rVrl267Dh06aNOmTWrVqpXCwsJUrlw5uy8vACA3MAAA5HK7d+82kkyFChXM8OHD3T66detmJJnevXu7bOts3717t9W2aNEiI8nUrFnTJCcnW+0HDx40xYoVM5JMt27dXOYJDw83kkzbtm1NSkpKurlatmzpMv755583kszQoUNNWlqa1Z6YmGjq1Klj8uTJYw4cOJCuztKlS5s9e/bYfm0ur3fevHlGkunbt2+68adPnzbnzp276rxTp041kowks2DBApe+wYMHG0nmmWeesdrOnz9vIiIiTP78+c369etdxv/666/G19fXtGnTxqVdkomOjs70+adOneq2v3PnzkaS+eijj1zajxw5YsqUKWOKFClizp49a7VHR0db3/MTJ05cbfcBALkcK9IAgJvGzp07NXLkyGue57PPPpMkDRs2TPny5bPaS5Qooeeee07PP/98httOmjRJefLksb5u3ry5wsPDtWbNGqstLS1N7733nipUqKCRI0e6HJKcP39+DRs2TPfdd5+++eabdKvSAwYMUNmyZa95HyUpMDAwXVtwcLCtOe666y61bNnSpe2FF17Q+++/r08//VRvvPGGfHx89N133yk+Pl6jRo3Sbbfd5jL+zjvvVNu2bTVnzhwlJiYqJCTE/s5c5vjx45o5c6aaNWumXr16ufQVLVpUAwYM0LPPPqtFixapTZs2Lv0jR45UwYIFr+n5AQA3PoI0AOCm0bJlSy1YsMBt39KlS9W0adMszbNp0yZJlwLelRo2bJjhdhkdCly6dGmXQ8K3bdumf/75RyVLlnQb/I8dOyZJ2rp1a7q+evXqXX0HrqJx48YqUaKExo4dq02bNqlNmzaKjo7WLbfcku4846tp1KhRurbg4GDVrFlTS5cu1a5du1SxYkWtXLlS0qV9d3fe8eHDh5WWlqbt27erTp06Hu2X05o1a5SamqqUlBS3zxUXFyfp0ut7ZZDOjtcXAHDjI0gDAGBTYmKifHx8VLhw4XR9xYoVy3C7jM4r9vPzU1pamvX1yZMnJUmbN2/W5s2bM5wvOTnZ1vNnVWhoqFauXKlhw4Zp/vz5+uGHHyRJZcqU0eDBg/XUU09lea6M6nG2Oy9c5tznGTNmZDqfu322y/lcsbGxio2NtfVc2fH6AgBufFy1GwAAm0JCQpSWlqbjx4+n68voatR255cuXdjKGJPhY+rUqem2tbtinJGyZctq2rRpOnbsmDZs2KBx48YpLS1NTz/9tL744ossz5PR6+Fsd/5xwbnP8+fPz3Sfo6Ojr3HP/u+5+vfvn+lzDR8+PN222fX6AgBubARpAABsqlGjhiS5Xc38/fffr3n+W265RSEhIVq7dq0uXLhwzfNdCx8fH9WsWVMDBw60ArS7229l5Ndff03XlpSUpI0bNyokJETly5eXJNWvX1+SMr3qubvaUlNT3fb5+vpKktv+unXryuFw2HouAAAuR5AGAMCmRx55RJI0atQonT171mo/fPiw3njjjWue38/PT08++aT27Nmj//3vf27D9F9//aWjR49e83O5s3nzZrcryc62vHnzZnmuRYsWaeHChS5tL7/8sk6dOqWuXbvKx+fSryJt27ZV2bJlNXHiRC1fvjzdPBcuXEh3f+eCBQtq//79bp/XeUGwffv2pesrXry4OnbsqN9//12vvfaajDHpxqxatUpnzpzJ2k4CAG46nCMNAIBNd911lzp37qzPP/9c1atXV7t27ZSSkqJZs2apfv36mj9/vhUQPTVy5EitX79eb775pv5fe3cTCm0fxXH8J4sZVsxkRs0opZSpGVlYTBNqLFBoihIrC8rLxsasqEmJslE0Gy+FLGhIxsVCUeRlYTMpJeV9YjcLNjbzPCtq6q7nvua+pZ6+n/Xp37mWv67TOYZhqLa2Vg6HQ8lkUpeXl0okEjo7O8vqTvR/2d/f1/DwsAKBgMrLy2W323V7e6vt7W1ZrVYNDg7+9lvNzc1qaWlRe3u7SktLdX5+rsPDQ5WVlWlsbOyrzmKxKBaLqampSXV1dQoGg/J6vcrJydHDw4OOj49lt9szFqwFg0Gtr68rFAqpqqpKubm5am1tlc/nk9/vV15enqanp5VKpVRUVCRJGhkZkSRFo1FdX18rHA5rZWVFfr9fBQUFenp60sXFhW5ubvTy8pKxlR0AgE8EaQAAsrC0tKSKigotLi5qZmZGbrdbQ0NDqq+vVzwe/+MTTRaLRXt7e1pYWNDy8rI2Njb08fEhp9Mpj8ejvr4+eb3ev/Q1mRoaGnR/f6+joyNtbm7q/f1dLpdLHR0dCofD8ng8v/1WW1ubenp6ND4+rq2tLeXn56u7u1sTExMqLCzMqK2urlYikdDU1JR2d3d1cnIii8Uil8ulUCikzs7OjPrPv/8HBweKx+NKp9Nyu93y+Xyy2WyKxWKKRCKam5v7mhz4DNI2m02np6eanZ3V2tqaVldXlU6nVVxcrMrKSo2Ojv5ymRwAAJKU88+v5pkAAEBW5ufn1dvbq2g0qv7+/p9uBwAAfAOCNAAAWXh9fZXT6czY4pxMJhUIBPT8/Ky7uzuVlJT8YIcAAOC7MNoNAEAWJicnZRiGampq5HA49Pj4qJ2dHb29vSkSiRCiAQD4HyNIAwCQhcbGRl1dXckwDKVSKVmtVvl8Pg0MDKirq+un2wMAAN+I0W4AAAAAAEzgjjQAAAAAACYQpAEAAAAAMIEgDQAAAACACQRpAAAAAABMIEgDAAAAAGACQRoAAAAAABMI0gAAAAAAmECQBgAAAADABII0AAAAAAAm/AvVjzY+0AT9+gAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 1000x800 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"width = 0.4\n",
"fontsize = 14\n",
"\n",
"plt.rc(\"font\", size=fontsize)\n",
"fig, ax = plt.subplots(1, 1, figsize=(10, 8))\n",
"\n",
"rects1 = ax.bar([0], sync_fps, width, color=\"#557f2d\")\n",
"rects2 = ax.bar([width], async_fps, width)\n",
"ax.set_ylabel(\"frames per second\")\n",
"ax.set_xticks([0, width])\n",
"ax.set_xticklabels([\"Sync mode\", \"Async mode\"])\n",
"ax.set_xlabel(\"Higher is better\")\n",
"\n",
"fig.suptitle(\"Sync mode VS Async mode\")\n",
"fig.tight_layout()\n",
"\n",
"plt.show()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## `AsyncInferQueue`\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Asynchronous mode pipelines can be supported with the [`AsyncInferQueue`](https://docs.openvino.ai/2024/openvino-workflow/running-inference/integrate-openvino-with-your-application/python-api-exclusives.html#asyncinferqueue) wrapper class. This class automatically spawns the pool of `InferRequest` objects (also called “jobs”) and provides synchronization mechanisms to control the flow of the pipeline. It is a simpler way to manage the infer request queue in Asynchronous mode."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Setting Callback\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"When `callback` is set, any job that ends inference calls upon the Python function. The `callback` function must have two arguments: one is the request that calls the `callback`, which provides the `InferRequest` API; the other is called “user data”, which provides the possibility of passing runtime values."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"def callback(infer_request, info) -> None:\n",
" \"\"\"\n",
" Define the callback function for postprocessing\n",
"\n",
" :param: infer_request: the infer_request object\n",
" info: a tuple includes original frame and starts time\n",
" :returns:\n",
" None\n",
" \"\"\"\n",
" global frame_number\n",
" global total_time\n",
" global inferqueue_fps\n",
" stop_time = time.time()\n",
" frame, start_time = info\n",
" total_time = stop_time - start_time\n",
" frame_number = frame_number + 1\n",
" inferqueue_fps = frame_number / total_time\n",
"\n",
" res = infer_request.get_output_tensor(0).data[0]\n",
" frame = postprocess(res, frame, inferqueue_fps)\n",
" # Encode numpy array to jpg\n",
" _, encoded_img = cv2.imencode(\".jpg\", frame, params=[cv2.IMWRITE_JPEG_QUALITY, 90])\n",
" # Create IPython image\n",
" i = display.Image(data=encoded_img)\n",
" # Display the image in this notebook\n",
" display.clear_output(wait=True)\n",
" display.display(i)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"def inferqueue(source, flip, fps, skip_first_frames) -> None:\n",
" \"\"\"\n",
" Define the main function for video processing with async infer queue\n",
"\n",
" :param: source: the video path or the ID of your webcam\n",
" :retuns:\n",
" None\n",
" \"\"\"\n",
" # Create infer requests queue\n",
" infer_queue = ov.AsyncInferQueue(compiled_model, 2)\n",
" infer_queue.set_callback(callback)\n",
" player = None\n",
" try:\n",
" # Create a video player\n",
" player = utils.VideoPlayer(source, flip=flip, fps=fps, skip_first_frames=skip_first_frames)\n",
" # Start capturing\n",
" start_time = time.time()\n",
" player.start()\n",
" while True:\n",
" # Capture frame\n",
" frame = player.next()\n",
" if frame is None:\n",
" print(\"Source ended\")\n",
" break\n",
" resized_frame = preprocess(frame)\n",
" # Start the inference request with async infer queue\n",
" infer_queue.start_async({input_layer_ir.any_name: resized_frame}, (frame, start_time))\n",
" except KeyboardInterrupt:\n",
" print(\"Interrupted\")\n",
" # Any different error\n",
" except RuntimeError as e:\n",
" print(e)\n",
" finally:\n",
" infer_queue.wait_all()\n",
" player.stop()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Test the performance with `AsyncInferQueue`\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAFoAoADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD8rKKKKsAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9k=",
"text/plain": [
"<IPython.core.display.Image object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"average throughput in async mode with async infer queue: 103.81 fps\n"
]
}
],
"source": [
"frame_number = 0\n",
"total_time = 0\n",
"inferqueue(source=video_path, flip=False, fps=30, skip_first_frames=800)\n",
"print(f\"average throughput in async mode with async infer queue: {inferqueue_fps:.2f} fps\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
},
"openvino_notebooks": {
"imageUrl": "",
"tags": {
"categories": [
"API Overview"
],
"libraries": [],
"other": [],
"tasks": [
"Object Detection"
]
}
},
"vscode": {
"interpreter": {
"hash": "08af04953a73b86b66cc089a637d3d397b0b73ad05ea59846f770cc21ccdacba"
}
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
"4ecf106c6ed841b8b894f447e66c41ba": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "DescriptionStyleModel",
"state": {
"description_width": ""
}
},
"54393aef1aee4b2a981c7b6ee75ed916": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {}
},
"c9c9f01fc0014058909e1d61e7bdd56d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "DropdownModel",
"state": {
"_options_labels": [
"CPU",
"AUTO"
],
"description": "Device:",
"index": 0,
"layout": "IPY_MODEL_54393aef1aee4b2a981c7b6ee75ed916",
"style": "IPY_MODEL_4ecf106c6ed841b8b894f447e66c41ba"
}
}
},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|