Spaces:
Runtime error
Runtime error
File size: 8,190 Bytes
a1866c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
"""
Run via: streamlit run app.py
"""
import json
import logging
import requests
import streamlit as st
import torch
from datasets import load_dataset
from datasets.dataset_dict import DatasetDict
from transformers import AutoTokenizer, AutoModel
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=logging.INFO,
)
logger = logging.getLogger(__name__)
model_hub_url = 'https://huggingface.co/malteos/aspect-scibert-task'
about_page_markdown = f"""# π Find Papers With Similar Task
See
- GitHub: https://github.com/malteos/aspect-document-embeddings
- Paper: #TODO
- Model hub: https://huggingface.co/malteos/aspect-scibert-task
"""
# Page setup
st.set_page_config(
page_title="Papers with similar Task",
page_icon="π",
layout="centered",
initial_sidebar_state="auto",
menu_items={
'Get help': None,
'Report a bug': None,
'About': about_page_markdown,
}
)
aspects = [
'task', 'method', 'dataset'
]
tokenizer_name_or_path = f'malteos/aspect-scibert-{aspects[0]}' # any aspect
dataset_config = 'malteos/aspect-paper-metadata'
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path)
@st.cache(show_spinner=False)
def st_load_model(name_or_path):
with st.spinner(f'Loading the model `{name_or_path}` (this might take a while)...'):
model = AutoModel.from_pretrained(name_or_path)
return model
@st.cache(show_spinner=False)
def st_load_dataset(name_or_path):
with st.spinner('Loading the dataset (this might take a while)...'):
dataset = load_dataset(name_or_path)
if isinstance(dataset, DatasetDict):
dataset = dataset['train']
# load existing faiss
for a in aspects:
dataset.load_faiss_index(f'{a}_embeddings', f'{a}_embeddings.faiss')
# add faiss
#dataset.add_faiss_index(column=f'{aspect}_embeddings')
#loaded_dataset.add_faiss_index(column='method_embeddings')
#loaded_dataset.add_faiss_index(column='dataset_embeddings')
return dataset
aspect_to_model = dict(
task=st_load_model('malteos/aspect-scibert-task'),
method=st_load_model('malteos/aspect-scibert-method'),
dataset=st_load_model('malteos/aspect-scibert-dataset'),
)
dataset = st_load_dataset(dataset_config)
def get_paper(doc_id):
res = requests.get(f'https://api.semanticscholar.org/v1/paper/{doc_id}')
if res.status_code == 200:
return res.json()
else:
raise ValueError(f'Cannot load paper from S2 API: {doc_id}')
def find_related_papers(paper_id, user_aspect):
# Add result to session
paper = get_paper(paper_id)
if paper is None or 'title' not in paper or 'abstract' not in paper:
raise ValueError('Could not retrieve data for input paper')
title_abs = paper['title'] + ': ' + paper['abstract']
# preprocess the input
inputs = tokenizer(title_abs, padding=True, truncation=True, return_tensors="pt", max_length=512)
# inference
outputs = aspect_to_model[user_aspect](**inputs)
# logger.info(f'attention_mask: {inputs["attention_mask"].shape}')
#
# logger.info(f'Outputs: {outputs["last_hidden_state"]}')
# logger.info(f'Outputs: {outputs["last_hidden_state"].shape}')
# Mean pool the token-level embeddings to get sentence-level embeddings
embeddings = torch.sum(
outputs["last_hidden_state"] * inputs['attention_mask'].unsqueeze(-1), dim=1
) / torch.clamp(torch.sum(inputs['attention_mask'], dim=1, keepdims=True), min=1e-9)
result = dict(
paper=paper,
aspect=user_aspect,
)
result.update(dict(
#embeddings=embeddings.tolist(),
))
# Retrieval
prompt = embeddings.detach().numpy()[0]
scores, retrieved_examples = dataset.get_nearest_examples(f'{user_aspect}_embeddings', prompt, k=10)
result.update(dict(
related_papers=retrieved_examples,
))
# st.session_state.results.append(result)
return result
# # Start session
# if 'results' not in st.session_state:
# st.session_state.results = []
# Page
st.title('Aspect-based Paper Similarity')
st.markdown("""This demo showcases [Specialized Document Embeddings for Aspect-based Research Paper Similarity](#TODO).""")
# Introduction
st.markdown(f"""The model was trained using a triplet loss on machine learning papers from the [paperswithcode.com](https://paperswithcode.com/) corpus with the objective of pulling embeddings of papers with the same task, method, or datasetclose together. For a more comprehensive overview of the model check out the [model card on π€ Model Hub]({model_hub_url}) or read [our paper](#TODO).
""")
st.markdown("""Enter a ArXiv ID or a DOI of a paper for that you want find similar papers.
Try it yourself! π""",
unsafe_allow_html=True)
# Demo
with st.form("aspect-input", clear_on_submit=False):
paper_id = st.text_input(
label='Enter paper ID (format "arXiv:<arxiv_id>", "<doi>", or "ACL:<acl_id>"):',
# value="arXiv:2202.06671",
placeholder='Any DOI, ACL, or ArXiv ID'
)
example = st.selectbox(
label='Or select example',
options=[
"arXiv:2202.06671",
'10.1016/j.eswa.2019.06.026'
]
)
# click_clear = st.button('clear text input', key=1)
# if click_clear:
# paper_id = st.text_input(
# label='Enter paper ID (arXiv:<arxiv_id>, or <doi>):', value="XXX", placeholder='123')
user_aspect = st.radio(
label="In what aspect are you interested?",
options=aspects
)
cols = st.columns(3)
submitted = cols[1].form_submit_button("Find related papers")
# Listener
if submitted:
if paper_id or example:
with st.spinner('Finding related papers...'):
try:
result = find_related_papers(paper_id if paper_id else example, user_aspect)
input_paper = result['paper']
related_papers = result['related_papers']
# with st.empty():
st.markdown(
f'''Your input paper: \n\n<a href="{input_paper['url']}"><b>{input_paper['title']}</b></a> ({input_paper['year']})<hr />''',
unsafe_allow_html=True)
related_html = '<ul>'
for i in range(len(related_papers['paper_id'])):
related_html += f'''<li><a href="{related_papers['url_abs'][i]}">{related_papers['title'][i]}</a></li>'''
related_html += '</ul>'
st.markdown(f'''Related papers with similar {result['aspect']}: {related_html}''', unsafe_allow_html=True)
except (TypeError, ValueError, KeyError) as e:
st.error(f'**Error**: {e}')
else:
st.error('**Error**: No paper ID provided. Please provide a ArXiv ID or DOI.')
# # Results
# if 'results' in st.session_state and st.session_state.results:
# first = True
# for result in st.session_state.results[::-1]:
# if not first:
# st.markdown("---")
# # st.markdown(f"ID:\n> {result['paperId']}")
# # col_1, col_2, col_3 = st.columns([1,2,2])
# # col_1.metric(label='', value=json.dumps(result))
# # col_2.metric(label='Label', value=f"fooo")
# # col_3.metric(label='Score', value=f"123")
# input_paper = result['paper']
# related_papers = result['related_papers']
#
# # with st.empty():
#
# st.markdown(f'''Your input paper: \n\n<a href="{input_paper['url']}"><b>{input_paper['title']}</b></a> ({input_paper['year']})<hr />''', unsafe_allow_html=True)
#
# related_html = '<ul>'
#
# for i in range(len(related_papers['paper_id'])):
# related_html += f'''<li><a href="{related_papers['url_abs'][i]}">{related_papers['title'][i]}</a></li>'''
#
# related_html += '</ul>'
#
# st.markdown(f'''Related papers with similar {result['aspect']}: {related_html}''', unsafe_allow_html=True)
#
# # st.markdown(f'''Related papers: {related_html}''', unsafe_allow_html=True)
#
# first = False
|