File size: 2,509 Bytes
c7ccb89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from typing import Dict, Union
from gliner import GLiNER
import gradio as gr

model = GLiNER.from_pretrained("xomad/gliner-model-merge-large-v1.0").to('cpu')


def merge_entities(entities):
    if not entities:
        return []
    merged = []
    current = entities[0]
    for next_entity in entities[1:]:
        if next_entity['entity'] == current['entity'] and (next_entity['start'] == current['end'] + 1 or next_entity['start'] == current['end']):
            current['word'] += ' ' + next_entity['word']
            current['end'] = next_entity['end']
        else:
            merged.append(current)
            current = next_entity
    merged.append(current)
    return merged

def process(
    prompt:str, text, threshold: float, nested_ner: bool, labels: str = ["match"]
) -> Dict[str, Union[str, int, float]]:
    text = prompt + "\n" + text
    r = {
        "text": text,
        "entities": [
            {
                "entity": entity["label"],
                "word": entity["text"],
                "start": entity["start"],
                "end": entity["end"],
                "score": 0,
            }
            for entity in model.predict_entities(
                text, labels, flat_ner=not nested_ner, threshold=threshold
            )
        ],
    }
    r["entities"] =  merge_entities(r["entities"])
    return r

with gr.Blocks(title="Open Information Extracting") as open_ie_interface:
    prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here")
    input_text = gr.Textbox(label="Text input", placeholder="Enter your text here")
    threshold = gr.Slider(0, 1, value=0.3, step=0.01, label="Threshold", info="Lower the threshold to increase how many entities get predicted.")
    nested_ner = gr.Checkbox(label="Nested NER", info="Allow for nested NER?")
    output = gr.HighlightedText(label="Predicted Entities")
    submit_btn = gr.Button("Submit")
    
    theme=gr.themes.Base()

    input_text.submit(fn=process, inputs=[prompt, input_text, threshold, nested_ner], outputs=output)
    prompt.submit(fn=process, inputs=[prompt, input_text, threshold, nested_ner], outputs=output)
    threshold.release(fn=process, inputs=[prompt, input_text, threshold, nested_ner], outputs=output)
    submit_btn.click(fn=process, inputs=[prompt, input_text, threshold, nested_ner], outputs=output)
    nested_ner.change(fn=process, inputs=[prompt, input_text, threshold, nested_ner], outputs=output)


if __name__ == "__main__":
    
    open_ie_interface.launch()