malavika4089 commited on
Commit
7e9782a
·
verified ·
1 Parent(s): cb9c083

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +91 -0
app.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import FSMTForConditionalGeneration, FSMTTokenizer
2
+ from transformers import AutoModelForSequenceClassification
3
+ from lxml.html.clean import Cleaner
4
+
5
+ from transformers import AutoTokenizer
6
+ from langdetect import detect
7
+ from newspaper import Article
8
+ from PIL import Image
9
+ import streamlit as st
10
+
11
+ import requests
12
+ import torch
13
+
14
+ st.markdown("## Prediction of Fakeness by Given URL")
15
+ background = Image.open('logo.jpg')
16
+ st.image(background)
17
+
18
+ st.markdown(f"### Article URL")
19
+ text = st.text_area("Insert some url here",
20
+ value="https://en.globes.co.il/en/article-yandex-looks-to-expand-activities-in-israel-1001406519")
21
+
22
+ # @st.cache(allow_output_mutation=True)
23
+ # def get_models_and_tokenizers():
24
+ # model_name = 'distilbert-base-uncased-finetuned-sst-2-english'
25
+ # model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2)
26
+ # model.eval()
27
+ # tokenizer = AutoTokenizer.from_pretrained(model_name)
28
+ # model.load_state_dict(torch.load('./my_saved_model/checkpoint-6320/rng_state.pth', map_location='cpu'))
29
+
30
+ # model_name_translator = "facebook/wmt19-ru-en"
31
+ # tokenizer_translator = FSMTTokenizer.from_pretrained(model_name_translator)
32
+ # model_translator = FSMTForConditionalGeneration.from_pretrained(model_name_translator)
33
+ # model_translator.eval()
34
+ # return model, tokenizer, model_translator, tokenizer_translator
35
+ @st.cache_data()
36
+ def get_models_and_tokenizers():
37
+ model_name = 'distilbert-base-uncased-finetuned-sst-2-english'
38
+ checkpoint_dir = './my_saved_model/checkpoint-6320/' # Path to your checkpoint folder
39
+
40
+ # Load the classification model and tokenizer
41
+ model = AutoModelForSequenceClassification.from_pretrained(checkpoint_dir, num_labels=2)
42
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
43
+
44
+ # Load the translator model and tokenizer
45
+ model_name_translator = "facebook/wmt19-ru-en"
46
+ tokenizer_translator = FSMTTokenizer.from_pretrained(model_name_translator)
47
+ model_translator = FSMTForConditionalGeneration.from_pretrained(model_name_translator)
48
+
49
+ model.eval()
50
+ model_translator.eval()
51
+ return model, tokenizer, model_translator, tokenizer_translator
52
+
53
+ model, tokenizer, model_translator, tokenizer_translator = get_models_and_tokenizers()
54
+
55
+ article = Article(text)
56
+ article.download()
57
+ article.parse()
58
+ concated_text = article.title + '. ' + article.text
59
+ lang = detect(concated_text)
60
+
61
+ st.markdown(f"### Language detection")
62
+
63
+ if lang == 'ru':
64
+ st.markdown(f"The language of this article is {lang.upper()} so we translated it!")
65
+ with st.spinner('Waiting for translation'):
66
+ input_ids = tokenizer_translator.encode(concated_text,
67
+ return_tensors="pt", max_length=512, truncation=True)
68
+ outputs = model_translator.generate(input_ids)
69
+ decoded = tokenizer_translator.decode(outputs[0], skip_special_tokens=True)
70
+ st.markdown("### Translated Text")
71
+ st.markdown(f"{decoded[:777]}")
72
+ concated_text = decoded
73
+ else:
74
+ st.markdown(f"The language of this article for sure: {lang.upper()}!")
75
+
76
+ st.markdown("### Extracted Text")
77
+ st.markdown(f"{concated_text[:777]}")
78
+
79
+ tokens_info = tokenizer(concated_text, truncation=True, return_tensors="pt")
80
+ with torch.no_grad():
81
+ raw_predictions = model(**tokens_info)
82
+ softmaxed = int(torch.nn.functional.softmax(raw_predictions.logits[0], dim=0)[1] * 100)
83
+ st.markdown("### Fakeness Prediction")
84
+ st.progress(softmaxed)
85
+ st.markdown(f"This is fake by *{softmaxed}%*!")
86
+ if (softmaxed > 70):
87
+ st.error('We would not trust this text!')
88
+ elif (softmaxed > 40):
89
+ st.warning('We are not sure about this text!')
90
+ else:
91
+ st.success('We would trust this text!')