Spaces:
Running
on
Zero
Running
on
Zero
Create app-backup.py
Browse files- app-backup.py +338 -0
app-backup.py
ADDED
@@ -0,0 +1,338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
import spaces
|
5 |
+
import torch
|
6 |
+
from diffusers import AutoencoderKL
|
7 |
+
from mixture_tiling_sdxl import StableDiffusionXLTilingPipeline
|
8 |
+
|
9 |
+
MAX_SEED = np.iinfo(np.int32).max
|
10 |
+
SCHEDULERS = [
|
11 |
+
"LMSDiscreteScheduler",
|
12 |
+
"DEISMultistepScheduler",
|
13 |
+
"HeunDiscreteScheduler",
|
14 |
+
"EulerAncestralDiscreteScheduler",
|
15 |
+
"EulerDiscreteScheduler",
|
16 |
+
"DPMSolverMultistepScheduler",
|
17 |
+
"DPMSolverMultistepScheduler-Karras",
|
18 |
+
"DPMSolverMultistepScheduler-Karras-SDE",
|
19 |
+
"UniPCMultistepScheduler"
|
20 |
+
]
|
21 |
+
|
22 |
+
# ๋ชจ๋ธ ๋ก๋ฉ: VAE ๋ฐ ํ์ผ๋ง ํ์ดํ๋ผ์ธ ์ด๊ธฐํ
|
23 |
+
vae = AutoencoderKL.from_pretrained(
|
24 |
+
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
25 |
+
).to("cuda")
|
26 |
+
|
27 |
+
model_id = "stablediffusionapi/yamermix-v8-vae"
|
28 |
+
pipe = StableDiffusionXLTilingPipeline.from_pretrained(
|
29 |
+
model_id,
|
30 |
+
torch_dtype=torch.float16,
|
31 |
+
vae=vae,
|
32 |
+
use_safetensors=False, # for yammermix
|
33 |
+
).to("cuda")
|
34 |
+
|
35 |
+
pipe.enable_model_cpu_offload() # VRAM์ด ์ ํ๋ ๊ฒฝ์ฐ ์ฌ์ฉ
|
36 |
+
pipe.enable_vae_tiling()
|
37 |
+
pipe.enable_vae_slicing()
|
38 |
+
|
39 |
+
#region functions
|
40 |
+
def select_scheduler(scheduler_name):
|
41 |
+
scheduler_parts = scheduler_name.split("-")
|
42 |
+
scheduler_class_name = scheduler_parts[0]
|
43 |
+
add_kwargs = {
|
44 |
+
"beta_start": 0.00085,
|
45 |
+
"beta_end": 0.012,
|
46 |
+
"beta_schedule": "scaled_linear",
|
47 |
+
"num_train_timesteps": 1000
|
48 |
+
}
|
49 |
+
if len(scheduler_parts) > 1:
|
50 |
+
add_kwargs["use_karras_sigmas"] = True
|
51 |
+
if len(scheduler_parts) > 2:
|
52 |
+
add_kwargs["algorithm_type"] = "sde-dpmsolver++"
|
53 |
+
import diffusers
|
54 |
+
scheduler_cls = getattr(diffusers, scheduler_class_name)
|
55 |
+
scheduler = scheduler_cls.from_config(pipe.scheduler.config, **add_kwargs)
|
56 |
+
return scheduler
|
57 |
+
|
58 |
+
@spaces.GPU
|
59 |
+
def predict(left_prompt, center_prompt, right_prompt, negative_prompt, left_gs, center_gs, right_gs,
|
60 |
+
overlap_pixels, steps, generation_seed, scheduler, tile_height, tile_width, target_height, target_width):
|
61 |
+
global pipe
|
62 |
+
print(f"Using scheduler: {scheduler}...")
|
63 |
+
pipe.scheduler = select_scheduler(scheduler)
|
64 |
+
generator = torch.Generator("cuda").manual_seed(generation_seed)
|
65 |
+
|
66 |
+
target_height = int(target_height)
|
67 |
+
target_width = int(target_width)
|
68 |
+
tile_height = int(tile_height)
|
69 |
+
tile_width = int(tile_width)
|
70 |
+
|
71 |
+
image = pipe(
|
72 |
+
prompt=[[left_prompt, center_prompt, right_prompt]],
|
73 |
+
negative_prompt=negative_prompt,
|
74 |
+
tile_height=tile_height,
|
75 |
+
tile_width=tile_width,
|
76 |
+
tile_row_overlap=0,
|
77 |
+
tile_col_overlap=overlap_pixels,
|
78 |
+
guidance_scale_tiles=[[left_gs, center_gs, right_gs]],
|
79 |
+
height=target_height,
|
80 |
+
width=target_width,
|
81 |
+
generator=generator,
|
82 |
+
num_inference_steps=steps,
|
83 |
+
)["images"][0]
|
84 |
+
return image
|
85 |
+
|
86 |
+
def calc_tile_size(target_height, target_width, overlap_pixels, max_tile_width_size=1280):
|
87 |
+
num_cols = 3
|
88 |
+
num_rows = 1
|
89 |
+
min_tile_dimension = 8
|
90 |
+
reduction_step = 8
|
91 |
+
max_tile_height_size = 1024
|
92 |
+
best_tile_width = 0
|
93 |
+
best_tile_height = 0
|
94 |
+
best_adjusted_target_width = 0
|
95 |
+
best_adjusted_target_height = 0
|
96 |
+
found_valid_solution = False
|
97 |
+
|
98 |
+
tile_width = max_tile_width_size
|
99 |
+
tile_height = max_tile_height_size
|
100 |
+
while tile_width >= min_tile_dimension:
|
101 |
+
horizontal_borders = num_cols - 1
|
102 |
+
total_horizontal_overlap = overlap_pixels * horizontal_borders
|
103 |
+
adjusted_target_width = tile_width * num_cols - total_horizontal_overlap
|
104 |
+
|
105 |
+
vertical_borders = num_rows - 1
|
106 |
+
total_vertical_overlap = overlap_pixels * vertical_borders
|
107 |
+
adjusted_target_height = tile_height * num_rows - total_vertical_overlap
|
108 |
+
|
109 |
+
if tile_width <= max_tile_width_size and adjusted_target_width <= target_width:
|
110 |
+
if adjusted_target_width > best_adjusted_target_width:
|
111 |
+
best_tile_width = tile_width
|
112 |
+
best_adjusted_target_width = adjusted_target_width
|
113 |
+
found_valid_solution = True
|
114 |
+
tile_width -= reduction_step
|
115 |
+
|
116 |
+
if found_valid_solution:
|
117 |
+
tile_width = best_tile_width
|
118 |
+
tile_height = max_tile_height_size
|
119 |
+
while tile_height >= min_tile_dimension:
|
120 |
+
horizontal_borders = num_cols - 1
|
121 |
+
total_horizontal_overlap = overlap_pixels * horizontal_borders
|
122 |
+
adjusted_target_width = tile_width * num_cols - total_horizontal_overlap
|
123 |
+
|
124 |
+
vertical_borders = num_rows - 1
|
125 |
+
total_vertical_overlap = overlap_pixels * vertical_borders
|
126 |
+
adjusted_target_height = tile_height * num_rows - total_vertical_overlap
|
127 |
+
|
128 |
+
if tile_height <= max_tile_height_size and adjusted_target_height <= target_height:
|
129 |
+
if adjusted_target_height > best_adjusted_target_height:
|
130 |
+
best_tile_height = tile_height
|
131 |
+
best_adjusted_target_height = adjusted_target_height
|
132 |
+
tile_height -= reduction_step
|
133 |
+
|
134 |
+
new_target_height = best_adjusted_target_height
|
135 |
+
new_target_width = best_adjusted_target_width
|
136 |
+
tile_width = best_tile_width
|
137 |
+
tile_height = best_tile_height
|
138 |
+
|
139 |
+
print("--- TILE SIZE CALCULATED VALUES ---")
|
140 |
+
print(f"Requested Overlap Pixels: {overlap_pixels}")
|
141 |
+
print(f"Tile Height (max {max_tile_height_size}, divisible by 8): {tile_height}")
|
142 |
+
print(f"Tile Width (max {max_tile_width_size}, divisible by 8): {tile_width}")
|
143 |
+
print(f"Columns: {num_cols} | Rows: {num_rows}")
|
144 |
+
print(f"Original Target: {target_height} x {target_width}")
|
145 |
+
print(f"Adjusted Target: {new_target_height} x {new_target_width}\n")
|
146 |
+
|
147 |
+
return new_target_height, new_target_width, tile_height, tile_width
|
148 |
+
|
149 |
+
def do_calc_tile(target_height, target_width, overlap_pixels, max_tile_size):
|
150 |
+
new_target_height, new_target_width, tile_height, tile_width = calc_tile_size(target_height, target_width, overlap_pixels, max_tile_size)
|
151 |
+
return gr.update(value=tile_height), gr.update(value=tile_width), gr.update(value=new_target_height), gr.update(value=new_target_width)
|
152 |
+
|
153 |
+
def clear_result():
|
154 |
+
return gr.update(value=None)
|
155 |
+
|
156 |
+
def randomize_seed_fn(generation_seed: int, randomize_seed: bool) -> int:
|
157 |
+
if randomize_seed:
|
158 |
+
generation_seed = random.randint(0, MAX_SEED)
|
159 |
+
return generation_seed
|
160 |
+
#endregion
|
161 |
+
|
162 |
+
# CSS ๊ฐ์ : ๋ฐฐ๊ฒฝ, ์ฌ๋ฐฑ, ๊ทธ๋ฆผ์ ๋ฐ ์์ ์์ญ ์ค์ ๋ฐฐ์น
|
163 |
+
css = """
|
164 |
+
body { background-color: #f0f2f5; }
|
165 |
+
.gradio-container {
|
166 |
+
background: #ffffff;
|
167 |
+
border-radius: 15px;
|
168 |
+
padding: 20px;
|
169 |
+
box-shadow: 0 4px 10px rgba(0,0,0,0.1);
|
170 |
+
}
|
171 |
+
.gradio-container h1 { color: #333333; }
|
172 |
+
.fillable { width: 95% !important; max-width: unset !important; }
|
173 |
+
#examples_container {
|
174 |
+
margin: auto;
|
175 |
+
width: 90%;
|
176 |
+
}
|
177 |
+
#examples_row {
|
178 |
+
justify-content: center;
|
179 |
+
}
|
180 |
+
"""
|
181 |
+
|
182 |
+
title = """
|
183 |
+
<h1 align="center" style="margin-bottom: 0.2em;">Mixture-of-Diffusers for SDXL Tiling Pipeline ๐ค</h1>
|
184 |
+
<p align="center" style="font-size:1.1em; color:#555;">
|
185 |
+
์ข/์ค์/์ฐ ๊ฐ ์์ญ์ ๋ค๋ฅธ ํ๋กฌํํธ๋ฅผ ์ ์ฉํ์ฌ ํ์ผ๋ง ์ด๋ฏธ์ง๋ฅผ ์์ฑํฉ๋๋ค.<br>
|
186 |
+
์๋ ์์ ๋ฅผ ํด๋ฆญํ๋ฉด ์
๋ ฅ์ฐฝ์ ๊ฐ์ด ์ฑ์์ง๋๋ค.
|
187 |
+
</p>
|
188 |
+
"""
|
189 |
+
|
190 |
+
with gr.Blocks(css=css, title="SDXL Tiling Pipeline") as app:
|
191 |
+
gr.Markdown(title)
|
192 |
+
|
193 |
+
with gr.Row():
|
194 |
+
# ์ข/์ค์/์ฐ ํ๋กฌํํธ ๋ฐ ๊ฒฐ๊ณผ ์์ญ
|
195 |
+
with gr.Column(scale=7):
|
196 |
+
generate_button = gr.Button("Generate", elem_id="generate_btn")
|
197 |
+
with gr.Row():
|
198 |
+
with gr.Column(variant="panel"):
|
199 |
+
gr.Markdown("### Left Region")
|
200 |
+
left_prompt = gr.Textbox(lines=4, placeholder="์: ์ธ์ฐฝํ ์ฒ๊ณผ ํ์ด์ด ๋น์ถ๋ ๋๋ฌด...", label="Left Prompt")
|
201 |
+
left_gs = gr.Slider(minimum=0, maximum=15, value=7, step=1, label="Left CFG Scale")
|
202 |
+
with gr.Column(variant="panel"):
|
203 |
+
gr.Markdown("### Center Region")
|
204 |
+
center_prompt = gr.Textbox(lines=4, placeholder="์: ์์ํ ํธ์์ ๋ฐ์ง์ด๋ ์๋ฉด...", label="Center Prompt")
|
205 |
+
center_gs = gr.Slider(minimum=0, maximum=15, value=7, step=1, label="Center CFG Scale")
|
206 |
+
with gr.Column(variant="panel"):
|
207 |
+
gr.Markdown("### Right Region")
|
208 |
+
right_prompt = gr.Textbox(lines=4, placeholder="์: ์
์ฅํ ์ฐ๋งฅ๊ณผ ํ๋์ ๊ฐ๋ฅด๋ ๊ตฌ๋ฆ...", label="Right Prompt")
|
209 |
+
right_gs = gr.Slider(minimum=0, maximum=15, value=7, step=1, label="Right CFG Scale")
|
210 |
+
with gr.Row():
|
211 |
+
negative_prompt = gr.Textbox(
|
212 |
+
lines=2,
|
213 |
+
label="Negative Prompt",
|
214 |
+
placeholder="์: blurry, low resolution, artifacts, poor details",
|
215 |
+
value="blurry, low resolution, artifacts, poor details"
|
216 |
+
)
|
217 |
+
with gr.Row():
|
218 |
+
result = gr.Image(label="Generated Image", show_label=True, format="png", interactive=False, scale=1)
|
219 |
+
|
220 |
+
# ์ฌ์ด๋๋ฐ: ํ๋ผ๋ฏธํฐ ๋ฐ ํ์ผ ํฌ๊ธฐ ๊ณ์ฐ
|
221 |
+
with gr.Sidebar(label="Parameters", open=True):
|
222 |
+
gr.Markdown("### Generation Parameters")
|
223 |
+
with gr.Row():
|
224 |
+
height = gr.Slider(label="Target Height", value=1024, step=8, minimum=512, maximum=1024)
|
225 |
+
width = gr.Slider(label="Target Width", value=1280, step=8, minimum=512, maximum=3840)
|
226 |
+
overlap = gr.Slider(minimum=0, maximum=512, value=128, step=8, label="Tile Overlap")
|
227 |
+
max_tile_size = gr.Dropdown(label="Max Tile Size", choices=[1024, 1280], value=1280)
|
228 |
+
calc_tile = gr.Button("Calculate Tile Size")
|
229 |
+
with gr.Row():
|
230 |
+
tile_height = gr.Textbox(label="Tile Height", value=1024, interactive=False)
|
231 |
+
tile_width = gr.Textbox(label="Tile Width", value=1024, interactive=False)
|
232 |
+
with gr.Row():
|
233 |
+
new_target_height = gr.Textbox(label="New Image Height", value=1024, interactive=False)
|
234 |
+
new_target_width = gr.Textbox(label="New Image Width", value=1280, interactive=False)
|
235 |
+
with gr.Row():
|
236 |
+
steps = gr.Slider(minimum=1, maximum=50, value=30, step=1, label="Inference Steps")
|
237 |
+
generation_seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
238 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=False)
|
239 |
+
with gr.Row():
|
240 |
+
scheduler = gr.Dropdown(label="Scheduler", choices=SCHEDULERS, value=SCHEDULERS[0])
|
241 |
+
|
242 |
+
# ์ค์์ ๋ฐฐ์น๋ ์์ ์์ญ
|
243 |
+
with gr.Row(elem_id="examples_row"):
|
244 |
+
with gr.Column(scale=12, elem_id="examples_container"):
|
245 |
+
gr.Markdown("### Example Prompts")
|
246 |
+
gr.Examples(
|
247 |
+
examples=[
|
248 |
+
[
|
249 |
+
"Lush green forest with sun rays filtering through the canopy",
|
250 |
+
"Crystal clear lake reflecting a vibrant sky",
|
251 |
+
"Majestic mountains with snowy peaks in the distance",
|
252 |
+
"blurry, low resolution, artifacts, poor details",
|
253 |
+
7, 7, 7,
|
254 |
+
128,
|
255 |
+
30,
|
256 |
+
123456789,
|
257 |
+
"UniPCMultistepScheduler",
|
258 |
+
1024, 1280,
|
259 |
+
1024, 1920,
|
260 |
+
1280
|
261 |
+
],
|
262 |
+
[
|
263 |
+
"Vibrant city street with neon signs and bustling crowds",
|
264 |
+
"Sleek modern skyscrapers with digital billboards",
|
265 |
+
"High-speed maglev train gliding over a futuristic urban landscape",
|
266 |
+
"blurry, poorly rendered, low quality, disfigured",
|
267 |
+
8, 8, 8,
|
268 |
+
100,
|
269 |
+
35,
|
270 |
+
987654321,
|
271 |
+
"EulerDiscreteScheduler",
|
272 |
+
1024, 1280,
|
273 |
+
1024, 1920,
|
274 |
+
1280
|
275 |
+
],
|
276 |
+
[
|
277 |
+
"Vibrant abstract strokes with fluid, swirling patterns in cool tones",
|
278 |
+
"Interlocking geometric shapes bursting with color and texture",
|
279 |
+
"Dynamic composition of splattered ink with smooth gradients",
|
280 |
+
"text, watermark, signature, distorted",
|
281 |
+
6, 6, 6,
|
282 |
+
80,
|
283 |
+
25,
|
284 |
+
192837465,
|
285 |
+
"DPMSolverMultistepScheduler-Karras",
|
286 |
+
1024, 1280,
|
287 |
+
1024, 1920,
|
288 |
+
1280
|
289 |
+
],
|
290 |
+
[
|
291 |
+
"Enchanted forest with glowing bioluminescent plants and mystical fog",
|
292 |
+
"Ancient castle with towering spires bathed in moonlight",
|
293 |
+
"Majestic dragon soaring above a starry night sky",
|
294 |
+
"low quality, artifact, deformed, sketchy",
|
295 |
+
9, 9, 9,
|
296 |
+
150,
|
297 |
+
40,
|
298 |
+
1029384756,
|
299 |
+
"DPMSolverMultistepScheduler-Karras-SDE",
|
300 |
+
1024, 1280,
|
301 |
+
1024, 1920,
|
302 |
+
1280
|
303 |
+
]
|
304 |
+
],
|
305 |
+
# ์์ ํด๋ฆญ ์ ๊ฐ ์
๋ ฅ์ฐฝ์ ๊ฐ์ด ์ฑ์์ง๋๋ก "inputs" ์ธ์๋ฅผ ์ถ๊ฐํฉ๋๋ค.
|
306 |
+
inputs=[left_prompt, center_prompt, right_prompt, negative_prompt,
|
307 |
+
left_gs, center_gs, right_gs, overlap, steps, generation_seed,
|
308 |
+
scheduler, tile_height, tile_width, height, width, max_tile_size],
|
309 |
+
cache_examples=False
|
310 |
+
)
|
311 |
+
|
312 |
+
# ์ด๋ฒคํธ ์ฐ๊ฒฐ: ํ์ผ ์ฌ์ด์ฆ ๊ณ์ฐ ๋ฐ ์ด๋ฏธ์ง ์์ฑ
|
313 |
+
event_calc_tile_size = {
|
314 |
+
"fn": do_calc_tile,
|
315 |
+
"inputs": [height, width, overlap, max_tile_size],
|
316 |
+
"outputs": [tile_height, tile_width, new_target_height, new_target_width]
|
317 |
+
}
|
318 |
+
calc_tile.click(**event_calc_tile_size)
|
319 |
+
|
320 |
+
generate_button.click(
|
321 |
+
fn=clear_result,
|
322 |
+
inputs=None,
|
323 |
+
outputs=result,
|
324 |
+
).then(**event_calc_tile_size).then(
|
325 |
+
fn=randomize_seed_fn,
|
326 |
+
inputs=[generation_seed, randomize_seed],
|
327 |
+
outputs=generation_seed,
|
328 |
+
queue=False,
|
329 |
+
api_name=False,
|
330 |
+
).then(
|
331 |
+
fn=predict,
|
332 |
+
inputs=[left_prompt, center_prompt, right_prompt, negative_prompt,
|
333 |
+
left_gs, center_gs, right_gs, overlap, steps, generation_seed,
|
334 |
+
scheduler, tile_height, tile_width, new_target_height, new_target_width],
|
335 |
+
outputs=result,
|
336 |
+
)
|
337 |
+
|
338 |
+
app.launch(share=False)
|