Spaces:
Runtime error
Runtime error
| # Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
| # | |
| # NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property | |
| # and proprietary rights in and to this software, related documentation | |
| # and any modifications thereto. Any use, reproduction, disclosure or | |
| # distribution of this software and related documentation without an express | |
| # license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. | |
| import torch | |
| from . import Camera | |
| import numpy as np | |
| def projection(x=0.1, n=1.0, f=50.0, near_plane=None): | |
| if near_plane is None: | |
| near_plane = n | |
| return np.array( | |
| [[n / x, 0, 0, 0], | |
| [0, n / -x, 0, 0], | |
| [0, 0, -(f + near_plane) / (f - near_plane), -(2 * f * near_plane) / (f - near_plane)], | |
| [0, 0, -1, 0]]).astype(np.float32) | |
| class PerspectiveCamera(Camera): | |
| def __init__(self, fovy=49.0, device='cuda'): | |
| super(PerspectiveCamera, self).__init__() | |
| self.device = device | |
| focal = np.tan(fovy / 180.0 * np.pi * 0.5) | |
| self.proj_mtx = torch.from_numpy(projection(x=focal, f=1000.0, n=1.0, near_plane=0.1)).to(self.device).unsqueeze(dim=0) | |
| def project(self, points_bxnx4): | |
| out = torch.matmul( | |
| points_bxnx4, | |
| torch.transpose(self.proj_mtx, 1, 2)) | |
| return out | |