Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import os | |
| from openai import OpenAI | |
| from langchain.memory import ConversationBufferMemory | |
| from langchain.vectorstores import FAISS | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain.embeddings import HuggingFaceEmbeddings | |
| from langchain.document_loaders import PyPDFLoader, TextLoader | |
| import tempfile | |
| # Page configuration | |
| st.set_page_config(page_title="DeepSeek RAG Chatbot", page_icon="π€", layout="wide") | |
| # App title and description | |
| st.title("π€ DeepSeek RAG Chatbot") | |
| st.subheader("A chatbot that uses your documents to give informed answers") | |
| # Set up API key input | |
| if 'DEEPSEEK_API_KEY' not in st.session_state: | |
| api_key = st.text_input("Enter your DeepSeek API Key:", type="password") | |
| if api_key: | |
| st.session_state['DEEPSEEK_API_KEY'] = api_key | |
| os.environ['DEEPSEEK_API_KEY'] = api_key | |
| st.success("API Key saved!") | |
| st.rerun() | |
| # Initialize session state variables | |
| if 'memory' not in st.session_state: | |
| st.session_state.memory = ConversationBufferMemory(return_messages=True) | |
| if 'chat_history' not in st.session_state: | |
| st.session_state.chat_history = [] | |
| if 'vectorstore' not in st.session_state: | |
| st.session_state.vectorstore = None | |
| if 'client' not in st.session_state and 'DEEPSEEK_API_KEY' in st.session_state: | |
| try: | |
| # Initialize DeepSeek client for chat | |
| st.session_state.client = OpenAI( | |
| api_key=st.session_state['DEEPSEEK_API_KEY'], | |
| base_url="https://api.deepseek.com" | |
| ) | |
| # Initialize small HuggingFace embeddings model | |
| # Using paraphrase-MiniLM-L3-v2 - a smaller version with only 22MB size | |
| st.session_state.embeddings = HuggingFaceEmbeddings( | |
| model_name="sentence-transformers/paraphrase-MiniLM-L3-v2" | |
| ) | |
| st.success("Models loaded successfully!") | |
| except Exception as e: | |
| st.error(f"Error initializing API: {str(e)}") | |
| # Function to process uploaded documents | |
| def process_documents(uploaded_files): | |
| temp_dir = tempfile.mkdtemp() | |
| for file in uploaded_files: | |
| file_path = os.path.join(temp_dir, file.name) | |
| with open(file_path, "wb") as f: | |
| f.write(file.getbuffer()) | |
| # Load documents based on file type | |
| documents = [] | |
| for file in uploaded_files: | |
| if file.name.endswith('.pdf'): | |
| loader = PyPDFLoader(os.path.join(temp_dir, file.name)) | |
| documents.extend(loader.load()) | |
| elif file.name.endswith('.txt'): | |
| loader = TextLoader(os.path.join(temp_dir, file.name)) | |
| documents.extend(loader.load()) | |
| # Split documents into chunks | |
| text_splitter = RecursiveCharacterTextSplitter( | |
| chunk_size=1000, | |
| chunk_overlap=200 | |
| ) | |
| document_chunks = text_splitter.split_documents(documents) | |
| # Create or update vector store | |
| if st.session_state.vectorstore is None: | |
| st.session_state.vectorstore = FAISS.from_documents( | |
| document_chunks, | |
| st.session_state.embeddings | |
| ) | |
| else: | |
| # Add new documents to existing vectorstore | |
| st.session_state.vectorstore.add_documents(document_chunks) | |
| return len(document_chunks) | |
| # Function to retrieve relevant context from vector database | |
| def retrieve_context(query, k=3): | |
| if st.session_state.vectorstore is None: | |
| return "" | |
| docs = st.session_state.vectorstore.similarity_search(query, k=k) | |
| context = "\n\n".join([doc.page_content for doc in docs]) | |
| return context | |
| # Main application layout | |
| if 'DEEPSEEK_API_KEY' in st.session_state: | |
| # Create a two-column layout | |
| col1, col2 = st.columns([3, 1]) | |
| with col2: | |
| st.header("Document Upload") | |
| uploaded_files = st.file_uploader( | |
| "Upload your documents", | |
| accept_multiple_files=True, | |
| type=["pdf", "txt"] | |
| ) | |
| if uploaded_files: | |
| if st.button("Process Documents"): | |
| with st.spinner("Processing documents..."): | |
| num_chunks = process_documents(uploaded_files) | |
| st.success(f"Successfully processed {len(uploaded_files)} documents into {num_chunks} chunks!") | |
| st.header("RAG Settings") | |
| k_documents = st.slider("Number of documents to retrieve", min_value=1, max_value=10, value=3) | |
| # Clear conversation button | |
| if st.button("Clear Conversation"): | |
| st.session_state.memory = ConversationBufferMemory(return_messages=True) | |
| st.session_state.chat_history = [] | |
| st.success("Conversation cleared!") | |
| st.rerun() | |
| # Clear knowledge base button | |
| if st.button("Clear Knowledge Base"): | |
| st.session_state.vectorstore = None | |
| st.success("Knowledge base cleared!") | |
| with col1: | |
| # Display chat history | |
| for message in st.session_state.chat_history: | |
| with st.chat_message(message["role"]): | |
| st.write(message["content"]) | |
| # User input | |
| user_input = st.chat_input("Type your message here...") | |
| if user_input: | |
| # Add user message to chat history | |
| st.session_state.chat_history.append({"role": "user", "content": user_input}) | |
| # Display user message | |
| with st.chat_message("user"): | |
| st.write(user_input) | |
| # Get model response | |
| with st.chat_message("assistant"): | |
| with st.spinner("Thinking..."): | |
| try: | |
| # Retrieve relevant context from vector database | |
| context = retrieve_context(user_input, k=k_documents) | |
| # Prepare chat history for DeepSeek API | |
| system_prompt = "You are a helpful assistant with access to a knowledge base." | |
| if context: | |
| system_prompt += f"\n\nRelevant information from knowledge base:\n{context}\n\nUse this information to answer the user's question. If the information doesn't contain the answer, just say that you don't know based on the available information." | |
| messages = [{"role": "system", "content": system_prompt}] | |
| for msg in st.session_state.chat_history: | |
| messages.append({"role": msg["role"], "content": msg["content"]}) | |
| # Call DeepSeek API | |
| response = st.session_state.client.chat.completions.create( | |
| model="deepseek-chat", | |
| messages=messages, | |
| stream=False | |
| ) | |
| assistant_response = response.choices[0].message.content | |
| st.write(assistant_response) | |
| # Add assistant response to chat history | |
| st.session_state.chat_history.append({"role": "assistant", "content": assistant_response}) | |
| except Exception as e: | |
| st.error(f"Error: {str(e)}") | |
| # Sidebar with info | |
| with st.sidebar: | |
| st.header("About") | |
| st.markdown(""" | |
| This RAG chatbot uses: | |
| - π¦ LangChain for memory and document processing | |
| - π FAISS for vector storage and retrieval | |
| - π§ HuggingFace for lightweight embeddings (paraphrase-MiniLM-L3-v2) | |
| - π€ DeepSeek API for AI responses | |
| - π₯οΈ Streamlit for the web interface | |
| The chatbot can: | |
| - Upload and process PDF and text documents | |
| - Retrieve relevant information from documents | |
| - Generate informed responses using your documents | |
| - Maintain conversation context | |
| """) |