foodvision_mini / app.py
ms
Foodvision app
24af9b4
### 1. Imports and class names setup ###
import gradio as gr
import os
import torch
from model import create_effnetb2_model
from timeit import default_timer as timer
from typing import Tuple, Dict
# Setup class names
class_names = ["pizza", "steak", "sushi"]
### 2. Model and transforms preparation ###
# Create EffNetB2 model
effnetb2, effnetb2_transforms = create_effnetb2_model(
num_classes=3, # len(class_names) would also work
)
# Load saved weights
effnetb2.load_state_dict(
torch.load(
f="09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth",
map_location=torch.device("cpu"), # load to CPU
)
)
### 3. Predict function ###
# Create predict function
def predict(img) -> Tuple[Dict, float]:
"""Transforms and performs a prediction on img and returns prediction and time taken.
"""
# Start the timer
start_time = timer()
# Transform the target image and add a batch dimension
img = effnetb2_transforms(img).unsqueeze(0)
# Put model into evaluation mode and turn on inference mode
effnetb2.eval()
with torch.inference_mode():
# Pass the transformed image through the model and turn the prediction logits into prediction probabilities
pred_probs = torch.softmax(effnetb2(img), dim=1)
# Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
# Calculate the prediction time
pred_time = round(timer() - start_time, 5)
# Return the prediction dictionary and prediction time
return pred_labels_and_probs, pred_time
### 4. Gradio app ###
# Create title, description and article strings
title = "FoodVision Mini πŸ•πŸ₯©πŸ£"
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi."
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
# Create examples list from "examples/" directory
example_list = [["examples/" + example] for example in os.listdir("examples")]
# Create the Gradio demo
demo = gr.Interface(fn=predict, # mapping function from input to output
inputs=gr.Image(type="pil"), # what are the inputs?
outputs=[gr.Label(num_top_classes=3, label="Predictions"), # what are the outputs?
gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
# Create examples list from "examples/" directory
examples=example_list,
title=title,
description=description,
article=article)
# Launch the demo!
demo.launch()
# 1. Imports and class name
import gradio as gr
import os
import torch
from model import create_effnetb2_model
from timeit import default_timer as timer
from typing import Tuple, Dict
# setup class name
class_names = ['pizza', 'steak', 'sushi']
# 2. Model and transforms preparation
# create effnetb2 model
effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=3)
# load saved weights
effnetb2.load_state_dict(
torch.load(f='09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent',
map_location = torch.device('cpu')
)
)
# 3. predict function
# create predict function
def predict(img) -> Tuple[Dict, float]:
"""
Transforms and performs a prediction on img and returns prediction and time taken.
"""
# start the timer
start_time = timer()
# transform the target img and add a batch dimension
img = effnetb2_transforms(img).unsqueeze(dim=0)
# put model into evaluation mode and turn on inference mode
effnetb2.eval()
with torch.inference_mode():
# pass the transformed image through the model and turn the prediction logits into prediction probabilities
pred_probs = torch.softmax(effnetb2(img), dim=1)
# create a prediction label and prediction probability dictionary for each prediction class
# this is the required format for Gradio's output
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][1]) for i in range(len(class_names))}
# end time
end_time = timer()
# calculate the prediction time
pred_time = round(end_time - start_time, 5)
return pred_labels_and_probs, pred_time
# 4. Gradio App
# Create titme, description, and article strings
title = "FoodVision Mini πŸ•πŸ₯©πŸ£"
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi."
article = "Learned from [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
# create examples list from 'examples/' directory
example_list = [[f'examples/{example}'] for example in os.listdir('examples')]
# Create the Gradio demo
demo = gr.Interface(fn=predict,
inputs=gr.Image(type='pil'),
outputs=[gr.Label(num_top_classes=3, label='Prediction'),
gr.Number(label='Prediction time(s)')],
examples=example_list,
title=title,
description=description,
article=article)
# launch the demo!
demo.launch()