Spaces:
Runtime error
Runtime error
File size: 1,861 Bytes
13d3de7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import subprocess
import torch
from transformers import pipeline
from logging_config import logger, log_buffer
device = "cuda" if torch.cuda.is_available() else "cpu"
def convert_audio_to_wav(input_file: str, output_file: str, ffmpeg_path: str) -> str:
logger.info(f"Converting {input_file} to WAV format: {output_file}")
cmd = [
ffmpeg_path,
"-y", # Overwrite output files without asking
"-i", input_file,
"-ar", "16000", # Set audio sampling rate to 16kHz
"-ac", "1", # Set number of audio channels to mono
output_file
]
try:
subprocess.run(cmd, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
logger.info("Audio conversion to WAV completed successfully.")
return output_file
except subprocess.CalledProcessError as e:
ffmpeg_error = e.stderr.decode()
logger.error(f"ffmpeg error: {ffmpeg_error}")
raise RuntimeError("Failed to convert audio to WAV.") from e
def run_whisper_transcription(wav_file_path: str, device: str):
try:
asr_pipeline = pipeline(
"automatic-speech-recognition",
model="openai/whisper-small",
device=0 if device == "cuda" else -1,
return_timestamps=True,
generate_kwargs={"task": "transcribe", "language": "en"}
)
logger.info("Whisper ASR pipeline initialised.")
logger.info("Starting transcription...")
# Perform transcription
result = asr_pipeline(wav_file_path)
transcription = result.get("text", "")
logger.info("Transcription completed successfully.")
yield transcription, log_buffer.getvalue()
except Exception as e:
err_msg = f"Error during transcription: {str(e)}"
logger.error(err_msg)
yield err_msg, log_buffer.getvalue() |