import pandas as pd def diversity(x): return x.nunique()/len(x) if len(x)>0 else 0 def _nonempty(x): return x[x.astype(str).str.len()>0] def successful_diversity(x): return diversity(_nonempty(x)) def success_rate(x): return len(_nonempty(x))/len(x) if len(x)>0 else 0 def threshold_rate(x, threshold): return (x>threshold).sum()/len(x) def successful_nonzero_diversity(x): # To be used with groupby.apply return pd.Series({'completions_successful_nonzero_diversity': successful_diversity(x.loc[x['rewards']>0,'completions'])}) def completion_top_stats(x, exclude=None, ntop=1): # To be used with groupby.apply vc = x['completions'].value_counts() if exclude is not None: vc.drop(exclude, inplace=True, errors='ignore') rewards = x.loc[x['completions'].isin(vc.index[:ntop])].groupby('completions').rewards.agg(['mean','std','max']) return pd.DataFrame({ 'completions_top':rewards.index.tolist(), 'completions_freq':vc.values[:ntop], 'completions_reward_mean':rewards['mean'].values, 'completions_reward_std':rewards['std'].values }) def top(x, i=0, exclude=''): return _nonempty(x).value_counts().drop(exclude, errors='ignore').index[i] def freq(x, i=0, exclude=''): return _nonempty(x).value_counts().drop(exclude, errors='ignore').values[i] def nonzero_rate(x): return (x>0).sum()/len(x) def nonzero_mean(x): return x[x>0].mean() def nonzero_std(x): return x[x>0].std() def nonzero_median(x): return x[x>0].median()