import os import pandas as pd import streamlit as st from meta_utils import run_subprocess, load_metagraphs # from opendashboards.assets import io, inspect, metric, plot from meta_plotting import plot_trace, plot_cabals import asyncio ## TODO: Read blocks from a big parquet file instead of loading all the pickles -- this is slow def get_or_create_eventloop(): try: return asyncio.get_event_loop() except RuntimeError as ex: if "There is no current event loop in thread" in str(ex): loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) return asyncio.get_event_loop() loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) import bittensor datadir='data/metagraph/1/' blockfiles = sorted(int(filename.split('.')[0]) for filename in os.listdir(datadir)) DEFAULT_SRC = 'miner' DEFAULT_BLOCK_START = blockfiles[0] DEFAULT_BLOCK_END = blockfiles[-1] DEFAULT_BLOCK_STEP = 1000 DEFAULT_NTOP = 10 DEFAULT_UID_NTOP = 10 # Set app config st.set_page_config( page_title='Validator Dashboard', menu_items={ 'Report a bug': "https://github.com/opentensor/dashboards/issues", 'About': """ This dashboard is part of the OpenTensor project. \n """ }, layout = "centered" ) st.title('Metagraph :red[Analysis] Dashboard :eyes:') # add vertical space st.markdown('#') st.markdown('#') subtensor = bittensor.subtensor(network='finney') current_block = subtensor.get_current_block() current_difficulty = subtensor.difficulty(1, block=current_block) bcol1, bcol2, bcol3 = st.columns([0.2, 0.6, 0.2]) with bcol1: st.metric('Current **block**', current_block, delta='+7200 [24hr]') # st.metric('Current **difficulty**', f'{current_difficulty/10e12:.0}T', delta='?') block_start, block_end = bcol2.select_slider( 'Select a **block range**', options=blockfiles, value=(DEFAULT_BLOCK_START, DEFAULT_BLOCK_END), format_func=lambda x: f'{x:,}' ) bcol3.button('Refresh', on_click=run_subprocess) with st.spinner(text=f'Loading data...'): # df = load_metagraphs(block_start=block_start, block_end=block_end, block_step=DEFAULT_BLOCK_STEP) df = pd.read_parquet('blocks_600100_807300_100') blocks = df.block.unique() df_sel = df.loc[df.block.between(block_start, block_end)] # add vertical space st.markdown('#') st.markdown('#') tab1, tab2, tab3, tab4 = st.tabs(["Overview", "Miners", "Validators", "Block"]) miner_choices = ['total_stake','ranks','incentive','emission','consensus','trust','validator_trust','dividends'] cabal_choices = ['hotkey','ip','coldkey'] ### Overview ### with tab1: x_col = st.radio('X-axis', ['block','timestamp'], index=0, horizontal=True) acol1, acol2 = st.columns([0.3, 0.7]) sel_ntop = acol1.slider('Number:', min_value=1, max_value=50, value=10, key='sel_ntop') #horizontal list miner_choice = acol2.radio('Select:', miner_choices, horizontal=True, index=0) st.plotly_chart( plot_trace(df_sel, time_col=x_col,col=miner_choice, ntop=sel_ntop), use_container_width=True ) col1, col2 = st.columns(2) count_col = col1.radio('Count', cabal_choices, index=0, horizontal=True) y_col = col2.radio('Agg on', cabal_choices, index=2, horizontal=True) st.plotly_chart( plot_cabals(df_sel, time_col=x_col, count_col=count_col, sel_col=y_col, ntop=sel_ntop), use_container_width=True ) with tab2: # plot of miner weights versus time/block pass