Spaces:
Paused
Paused
import pandas as pd | |
def diversity(x): | |
return x.nunique()/len(x) if len(x)>0 else 0 | |
def _nonempty(x): | |
return x[x.astype(str).str.len()>0] | |
def successful_diversity(x): | |
return diversity(_nonempty(x)) | |
def success_rate(x): | |
return len(_nonempty(x))/len(x) if len(x)>0 else 0 | |
def threshold_rate(x, threshold): | |
return (x>threshold).sum()/len(x) | |
def successful_nonzero_diversity(x): | |
# To be used with groupby.apply | |
return pd.Series({'completions_successful_nonzero_diversity': successful_diversity(x.loc[x['rewards']>0,'completions'])}) | |
def completion_top_stats(x, exclude=None, ntop=1): | |
# To be used with groupby.apply | |
vc = x['completions'].value_counts() | |
if exclude is not None: | |
vc.drop(exclude, inplace=True, errors='ignore') | |
rewards = x.loc[x['completions'].isin(vc.index[:ntop])].groupby('completions').rewards.agg(['mean','std','max']) | |
return pd.DataFrame({ | |
'completions_top':rewards.index.tolist(), | |
'completions_freq':vc.values[:ntop], | |
'completions_reward_mean':rewards['mean'].values, | |
'completions_reward_std':rewards['std'].values | |
}) | |
def top(x, i=0, exclude=''): | |
return _nonempty(x).value_counts().drop(exclude, errors='ignore').index[i] | |
def freq(x, i=0, exclude=''): | |
return _nonempty(x).value_counts().drop(exclude, errors='ignore').values[i] | |
def nonzero_rate(x): | |
return (x>0).sum()/len(x) | |
def nonzero_mean(x): | |
return x[x>0].mean() | |
def nonzero_std(x): | |
return x[x>0].std() | |
def nonzero_median(x): | |
return x[x>0].median() |