steffenc's picture
Adapt syntax for validator v1.1.0 schema
55af4cc
raw
history blame
7.71 kB
import os
import re
import pandas as pd
import streamlit as st
import opendashboards.utils.utils as utils
from pandas.api.types import (
is_categorical_dtype,
is_datetime64_any_dtype,
is_numeric_dtype,
is_object_dtype,
)
@st.cache_data
def load_runs(project, filters, min_steps=10):
runs = []
n_events = 0
successful = 0
progress = st.progress(0, 'Fetching runs from wandb')
msg = st.empty()
all_runs = utils.get_runs(project, filters, api_key=st.secrets['WANDB_API_KEY'])
for i, run in enumerate(all_runs):
summary = run.summary
step = summary.get('_step',-1) + 1
if step < min_steps:
msg.warning(f'Skipped run `{run.name}` because it contains {step} events (<{min_steps})')
continue
prog_msg = f'Loading data {i/len(all_runs)*100:.0f}% ({successful}/{len(all_runs)} runs, {n_events} events)'
progress.progress(i/len(all_runs),f'{prog_msg}... **fetching** `{run.name}`')
duration = summary.get('_runtime')
end_time = summary.get('_timestamp')
# extract values for selected tags
rules = {'hotkey': re.compile('^[0-9a-z]{48}$',re.IGNORECASE), 'version': re.compile('^\\d\.\\d+\.\\d+$'), 'spec_version': re.compile('\\d{4}$')}
tags = {k: tag for k, rule in rules.items() for tag in run.tags if rule.match(tag)}
# include bool flag for remaining tags
tags.update({k: k in run.tags for k in ('mock','custom_gating_model','nsfw_filter','outsource_scoring','disable_set_weights')})
runs.append({
'state': run.state,
'num_steps': step,
'num_completions': step*sum(len(v) for k, v in run.summary.items() if k.endswith('completions') and isinstance(v, list)),
'entity': run.entity,
'run_id': run.id,
'run_name': run.name,
'project': run.project,
'url': run.url,
'run_path': os.path.join(run.entity, run.project, run.id),
'start_time': pd.to_datetime(end_time-duration, unit="s"),
'end_time': pd.to_datetime(end_time, unit="s"),
'duration': pd.to_timedelta(duration, unit="s").round('s'),
**tags
})
n_events += step
successful += 1
progress.empty()
msg.empty()
return pd.DataFrame(runs).astype({'state': 'category', 'hotkey': 'category', 'version': 'category', 'spec_version': 'category'})
@st.cache_data
def load_data(selected_runs, load=True, save=False):
frames = []
n_events = 0
successful = 0
progress = st.progress(0, 'Loading data')
info = st.empty()
if not os.path.exists('data/'):
os.makedirs('data/')
for i, idx in enumerate(selected_runs.index):
run = selected_runs.loc[idx]
prog_msg = f'Loading data {i/len(selected_runs)*100:.0f}% ({successful}/{len(selected_runs)} runs, {n_events} events)'
file_path = os.path.join('data',f'history-{run.run_id}.csv')
if load and os.path.exists(file_path):
progress.progress(i/len(selected_runs),f'{prog_msg}... **reading** `{file_path}`')
try:
df = utils.load_data(file_path)
except Exception as e:
info.warning(f'Failed to load history from `{file_path}`')
st.exception(e)
continue
else:
progress.progress(i/len(selected_runs),f'{prog_msg}... **downloading** `{run.run_path}`')
try:
# Download the history from wandb and add metadata
df = utils.download_data(run.run_path).assign(**run.to_dict())
print(f'Downloaded {df.shape[0]} events from `{run.run_path}`. Columns: {df.columns}')
df.info()
if save and run.state != 'running':
df.to_csv(file_path, index=False)
# st.info(f'Saved history to {file_path}')
except Exception as e:
info.warning(f'Failed to download history for `{run.run_path}`')
st.exception(e)
continue
frames.append(df)
n_events += df.shape[0]
successful += 1
progress.empty()
if not frames:
info.error('No data loaded')
st.stop()
# Remove rows which contain chain weights as it messes up schema
return pd.concat(frames)
def filter_dataframe(df: pd.DataFrame, demo_selection=None) -> pd.DataFrame:
"""
Adds a UI on top of a dataframe to let viewers filter columns
Args:
df (pd.DataFrame): Original dataframe
demo_selection (pd.Index): Index of runs to select (if demo)
Returns:
pd.DataFrame: Filtered dataframe
"""
filter_mode = st.sidebar.radio("Filter mode", ("Use demo", "Add filters"), index=0)
run_msg = st.info("Select a single wandb run or compare multiple runs")
if filter_mode == "Use demo":
df = df.loc[demo_selection]
run_msg.info(f"Selected {len(df)} runs")
return df
df = df.copy()
# Try to convert datetimes into a standarrd format (datetime, no timezone)
for col in df.columns:
if is_object_dtype(df[col]):
try:
df[col] = pd.to_datetime(df[col])
except Exception:
pass
if is_datetime64_any_dtype(df[col]):
df[col] = df[col].dt.tz_localize(None)
modification_container = st.container()
with modification_container:
to_filter_columns = st.multiselect("Filter dataframe on", df.columns)
for column in to_filter_columns:
left, right = st.columns((1, 20))
# Treat columns with < 10 unique values as categorical
if is_categorical_dtype(df[column]) or df[column].nunique() < 10:
user_cat_input = right.multiselect(
f"Values for {column}",
df[column].unique(),
default=list(df[column].unique()),
)
df = df[df[column].isin(user_cat_input)]
elif is_numeric_dtype(df[column]):
_min = float(df[column].min())
_max = float(df[column].max())
step = (_max - _min) / 100
user_num_input = right.slider(
f"Values for {column}",
min_value=_min,
max_value=_max,
value=(_min, _max),
step=step,
)
df = df[df[column].between(*user_num_input)]
elif is_datetime64_any_dtype(df[column]):
user_date_input = right.date_input(
f"Values for {column}",
value=(
df[column].min(),
df[column].max(),
),
)
if len(user_date_input) == 2:
user_date_input = tuple(map(pd.to_datetime, user_date_input))
start_date, end_date = user_date_input
df = df.loc[df[column].between(start_date, end_date)]
else:
user_text_input = right.text_input(
f"Substring or regex in {column}",
)
if user_text_input:
df = df[df[column].astype(str).str.contains(user_text_input)]
# Load data if new runs selected
if len(df):
run_msg.info(f"Selected {len(df)} runs")
else:
# open a dialog to select runs
run_msg.error("Please select at least one run")
# st.snow()
# st.stop()
return df