Spaces:
Paused
Paused
import time | |
import pandas as pd | |
import streamlit as st | |
def wandb(df_runs): | |
# get rows where start time is older than 24h ago | |
df_runs_old = df_runs.loc[df_runs.start_time < pd.to_datetime(time.time()-24*60*60, unit='s')] | |
col1, col2, col3 = st.columns(3) | |
col1.metric('Runs', df_runs.shape[0], delta=f'{df_runs.shape[0]-df_runs_old.shape[0]} (24h)') | |
col2.metric('Hotkeys', df_runs.hotkey.nunique(), delta=f'{df_runs.hotkey.nunique()-df_runs_old.hotkey.nunique()} (24h)') | |
col3.metric('Events', df_runs.num_steps.sum(), delta=f'{df_runs.num_steps.sum()-df_runs_old.num_steps.sum()} (24h)') | |
st.markdown('----') | |
def runs(df, df_long, selected_runs): | |
col1, col2, col3 = st.columns(3) | |
col1.metric(label="Runs", value=len(selected_runs)) | |
col1.metric(label="Events", value=df.shape[0]) # | |
col2.metric(label="Followup UIDs", value=df_long.followup_uids.nunique()) | |
col2.metric(label="Answer UIDs", value=df_long.answer_uids.nunique()) | |
col3.metric(label="Followup Completions", value=df_long.followup_completions.nunique()) | |
col3.metric(label="Answer Completions", value=df_long.answer_completions.nunique()) | |
st.markdown('----') | |
def uids(df_long, src, uid=None): | |
uid_col = f'{src}_uids' | |
completion_col = f'{src}_completions' | |
nsfw_col = f'{src}_nsfw_scores' | |
reward_col = f'{src}_rewards' | |
if uid is not None: | |
df_long = df_long.loc[df_long[uid_col] == uid] | |
col1, col2, col3 = st.columns(3) | |
col1.metric( | |
label="Success %", | |
value=f'{df_long.loc[df_long[completion_col].str.len() > 0].shape[0]/df_long.shape[0] * 100:.1f}' | |
) | |
col2.metric( | |
label="Diversity %", | |
value=f'{df_long[completion_col].nunique()/df_long.shape[0] * 100:.1f}' | |
) | |
col3.metric( | |
label="Toxicity %", | |
value=f'{df_long[nsfw_col].mean() * 100:.1f}' if nsfw_col in df_long.columns else 'N/A' | |
) | |
st.markdown('----') | |