File size: 5,260 Bytes
101093d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import streamlit as st
from meta_utils import run_subprocess, load_metagraphs
# from opendashboards.assets import io, inspect, metric, plot
from meta_plotting import plot_trace, plot_cabals

DEFAULT_SRC = 'miner'
DEFAULT_NTOP = 10
DEFAULT_UID_NTOP = 10

# Set app config
st.set_page_config(
    page_title='Validator Dashboard',
    menu_items={
        'Report a bug': "https://github.com/opentensor/dashboards/issues",
        'About': """
        This dashboard is part of the OpenTensor project. \n
        """
    },
    layout = "centered"
    )

st.title('Metagraph :red[Analysis] Dashboard :eyes:')
# add vertical space
st.markdown('#')
st.markdown('#')


with st.spinner(text=f'Loading data...'):
    df = load_metagraphs()

blocks = df.block.unique()

# metric.wandb(df_runs)

# add vertical space
st.markdown('#')
st.markdown('#')

tab1, tab2, tab3, tab4 = st.tabs(["Health", "Miners", "Validators", "Block"])


### Wandb Runs ###
with tab1:

    st.markdown('#')
    st.header(":violet[Wandb] Runs")

    run_msg = st.info("Select a single run or compare multiple runs")
    selected_runs = st.multiselect(f'Runs ({len(df_runs)})', df_runs.id, default=DEFAULT_SELECTED_RUNS, key='runs')

    # Load data if new runs selected
    if not selected_runs:
        # open a dialog to select runs
        run_msg.error("Please select at least one run")
        st.snow()
        st.stop()

    df = io.load_data(df_runs.loc[df_runs.id.isin(selected_runs)], load=True, save=True)
    df_long = inspect.explode_data(df)
    df_weights = inspect.weights(df)

    metric.runs(df, df_long, selected_runs)

    with st.expander(f'Show :violet[raw] data for {len(selected_runs)} selected runs'):
        inspect.run_event_data(df_runs,df, selected_runs)


### UID Health ###
with tab2:

    st.markdown('#')
    st.header("UID :violet[Health]")
    st.info(f"Showing UID health metrics for **{len(selected_runs)} selected runs**")

    uid_src = st.radio('Select one:', ['followup', 'answer'], horizontal=True, key='uid_src')

    metric.uids(df_long, uid_src)

    with st.expander(f'Show UID **{uid_src}** weights data for **{len(selected_runs)} selected runs**'):

        uids = st.multiselect('UID:', sorted(df_long[f'{uid_src}_uids'].unique()), key='uid')
        st.markdown('#')
        st.subheader(f"UID {uid_src.title()} :violet[Weights]")

        plot.weights(
                df_weights,
                uids=uids,
        )
        
    with st.expander(f'Show UID **{uid_src}** leaderboard data for **{len(selected_runs)} selected runs**'):

        st.markdown('#')
        st.subheader(f"UID {uid_src.title()} :violet[Leaderboard]")
        uid_col1, uid_col2 = st.columns(2)
        uid_ntop = uid_col1.slider('Number of UIDs:', min_value=1, max_value=50, value=DEFAULT_UID_NTOP, key='uid_ntop')
        uid_agg = uid_col2.selectbox('Aggregation:', ('mean','min','max','size','nunique'), key='uid_agg')

        plot.leaderboard(
                df,
                ntop=uid_ntop,
                group_on=f'{uid_src}_uids',
                agg_col=f'{uid_src}_rewards',
                agg=uid_agg
            )


    with st.expander(f'Show UID **{uid_src}** diversity data for **{len(selected_runs)} selected runs**'):

        st.markdown('#')
        st.subheader(f"UID {uid_src.title()} :violet[Diversity]")
        rm_failed = st.checkbox(f'Remove failed **{uid_src}** completions', value=True)
        plot.uid_diversty(df, rm_failed)


### Completions ###
with tab3:

    st.markdown('#')
    st.subheader('Completion :violet[Leaderboard]')
    completion_info = st.empty()

    msg_col1, msg_col2 = st.columns(2)
    completion_src = msg_col1.radio('Select one:', ['followup', 'answer'], horizontal=True, key='completion_src')
    completion_info.info(f"Showing **{completion_src}** completions for **{len(selected_runs)} selected runs**")
    
    completion_ntop = msg_col2.slider('Top k:', min_value=1, max_value=50, value=DEFAULT_COMPLETION_NTOP, key='completion_ntop')

    completion_col = f'{completion_src}_completions'
    reward_col = f'{completion_src}_rewards'
    uid_col = f'{completion_src}_uids'

    completions = inspect.completions(df_long, completion_col)

    # Get completions with highest average rewards
    plot.leaderboard(
        df,
        ntop=completion_ntop,
        group_on=completion_col,
        agg_col=reward_col,
        agg='mean',
        alias=True
    )

    with st.expander(f'Show **{completion_src}** completion rewards data for **{len(selected_runs)} selected runs**'):

        st.markdown('#')
        st.subheader('Completion :violet[Rewards]')

        completion_select = st.multiselect('Completions:', completions.index, default=completions.index[:3].tolist())
        # completion_regex = st.text_input('Completion regex:', value='', key='completion_regex')

        plot.completion_rewards(
            df,
            completion_col=completion_col,
            reward_col=reward_col,
            uid_col=uid_col,
            ntop=completion_ntop,
            completions=completion_select,
        )


### Prompt-based scoring ###
with tab4:
    # coming soon
    st.info('Prompt-based scoring coming soon')

    # st.dataframe(df_long_long.filter(regex=prompt_src).head())