Abhay Mishra
support department selection
63cb040
raw
history blame
1.92 kB
from sentence_transformers import SentenceTransformer
import pickle
import numpy as np
import torch
import gradio as gr
model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
with open("dep_course_title_to_content_embed.pickle", "rb") as handle:
loaded_map = pickle.load(handle)
dep_name_course_name = list(loaded_map.keys())
deps = list(set([x for (x,y) in dep_name_course_name]))
dep_to_course_name = {}
dep_to_course_embedding = {}
for dep in deps:
dep_to_course_name[dep] = []
dep_to_course_embedding[dep] = []
for (dep_name, course_name), embedding in loaded_map.items():
# print(embedding.shape)
dep_to_course_name[dep_name].append(course_name)
dep_to_course_embedding[dep_name].append(np.array(embedding, dtype = np.float32))
cos = torch.nn.CosineSimilarity(dim=1, eps=1e-6)
def give_best_match(query, Department):
if not Department:
Department = deps
course_titles = []
course_content_embeddings = []
for dep in Department:
course_titles += dep_to_course_name[dep]
course_content_embeddings += dep_to_course_embedding[dep]
course_content_embeddings = np.stack(course_content_embeddings)
embed = model.encode(query)
result = cos(torch.from_numpy(course_content_embeddings),torch.from_numpy(embed))
indices = reversed(np.argsort(result))
predictions = {course_titles[i] : float(result[i]) for i in indices}
return predictions
demo = gr.Interface(fn = give_best_match,
inputs=[
gr.Textbox(label="Describe the course",lines = 5, placeholder = "Type anything related to course/s\n\nTitle, Topics/Sub Topics, Refernce books, Questions asked in exams or some random fun stuff."),
gr.CheckboxGroup(deps),
],
outputs=gr.Label(label = "Most Relevant Courses", num_top_classes=5)
)
demo.launch()