LIVE / thrust /cub /device /dispatch /dispatch_reduce.cuh
Xu Ma
update
1c3c0d9
raw
history blame
42.6 kB
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/**
* \file
* cub::DeviceReduce provides device-wide, parallel operations for computing a reduction across a sequence of data items residing within device-accessible memory.
*/
#pragma once
#include <stdio.h>
#include <iterator>
#include "../../agent/agent_reduce.cuh"
#include "../../iterator/arg_index_input_iterator.cuh"
#include "../../thread/thread_operators.cuh"
#include "../../grid/grid_even_share.cuh"
#include "../../iterator/arg_index_input_iterator.cuh"
#include "../../config.cuh"
#include "../../util_debug.cuh"
#include "../../util_device.cuh"
#include <thrust/system/cuda/detail/core/triple_chevron_launch.h>
/// Optional outer namespace(s)
CUB_NS_PREFIX
/// CUB namespace
namespace cub {
/******************************************************************************
* Kernel entry points
*****************************************************************************/
/**
* Reduce region kernel entry point (multi-block). Computes privatized reductions, one per thread block.
*/
template <
typename ChainedPolicyT, ///< Chained tuning policy
typename InputIteratorT, ///< Random-access input iterator type for reading input items \iterator
typename OutputIteratorT, ///< Output iterator type for recording the reduced aggregate \iterator
typename OffsetT, ///< Signed integer type for global offsets
typename ReductionOpT> ///< Binary reduction functor type having member <tt>T operator()(const T &a, const T &b)</tt>
__launch_bounds__ (int(ChainedPolicyT::ActivePolicy::ReducePolicy::BLOCK_THREADS))
__global__ void DeviceReduceKernel(
InputIteratorT d_in, ///< [in] Pointer to the input sequence of data items
OutputIteratorT d_out, ///< [out] Pointer to the output aggregate
OffsetT num_items, ///< [in] Total number of input data items
GridEvenShare<OffsetT> even_share, ///< [in] Even-share descriptor for mapping an equal number of tiles onto each thread block
ReductionOpT reduction_op) ///< [in] Binary reduction functor
{
// The output value type
typedef typename If<(Equals<typename std::iterator_traits<OutputIteratorT>::value_type, void>::VALUE), // OutputT = (if output iterator's value type is void) ?
typename std::iterator_traits<InputIteratorT>::value_type, // ... then the input iterator's value type,
typename std::iterator_traits<OutputIteratorT>::value_type>::Type OutputT; // ... else the output iterator's value type
// Thread block type for reducing input tiles
typedef AgentReduce<
typename ChainedPolicyT::ActivePolicy::ReducePolicy,
InputIteratorT,
OutputIteratorT,
OffsetT,
ReductionOpT>
AgentReduceT;
// Shared memory storage
__shared__ typename AgentReduceT::TempStorage temp_storage;
// Consume input tiles
OutputT block_aggregate = AgentReduceT(temp_storage, d_in, reduction_op).ConsumeTiles(even_share);
// Output result
if (threadIdx.x == 0)
d_out[blockIdx.x] = block_aggregate;
}
/**
* Reduce a single tile kernel entry point (single-block). Can be used to aggregate privatized thread block reductions from a previous multi-block reduction pass.
*/
template <
typename ChainedPolicyT, ///< Chained tuning policy
typename InputIteratorT, ///< Random-access input iterator type for reading input items \iterator
typename OutputIteratorT, ///< Output iterator type for recording the reduced aggregate \iterator
typename OffsetT, ///< Signed integer type for global offsets
typename ReductionOpT, ///< Binary reduction functor type having member <tt>T operator()(const T &a, const T &b)</tt>
typename OutputT> ///< Data element type that is convertible to the \p value type of \p OutputIteratorT
__launch_bounds__ (int(ChainedPolicyT::ActivePolicy::SingleTilePolicy::BLOCK_THREADS), 1)
__global__ void DeviceReduceSingleTileKernel(
InputIteratorT d_in, ///< [in] Pointer to the input sequence of data items
OutputIteratorT d_out, ///< [out] Pointer to the output aggregate
OffsetT num_items, ///< [in] Total number of input data items
ReductionOpT reduction_op, ///< [in] Binary reduction functor
OutputT init) ///< [in] The initial value of the reduction
{
// Thread block type for reducing input tiles
typedef AgentReduce<
typename ChainedPolicyT::ActivePolicy::SingleTilePolicy,
InputIteratorT,
OutputIteratorT,
OffsetT,
ReductionOpT>
AgentReduceT;
// Shared memory storage
__shared__ typename AgentReduceT::TempStorage temp_storage;
// Check if empty problem
if (num_items == 0)
{
if (threadIdx.x == 0)
*d_out = init;
return;
}
// Consume input tiles
OutputT block_aggregate = AgentReduceT(temp_storage, d_in, reduction_op).ConsumeRange(
OffsetT(0),
num_items);
// Output result
if (threadIdx.x == 0)
*d_out = reduction_op(init, block_aggregate);
}
/// Normalize input iterator to segment offset
template <typename T, typename OffsetT, typename IteratorT>
__device__ __forceinline__
void NormalizeReductionOutput(
T &/*val*/,
OffsetT /*base_offset*/,
IteratorT /*itr*/)
{}
/// Normalize input iterator to segment offset (specialized for arg-index)
template <typename KeyValuePairT, typename OffsetT, typename WrappedIteratorT, typename OutputValueT>
__device__ __forceinline__
void NormalizeReductionOutput(
KeyValuePairT &val,
OffsetT base_offset,
ArgIndexInputIterator<WrappedIteratorT, OffsetT, OutputValueT> /*itr*/)
{
val.key -= base_offset;
}
/**
* Segmented reduction (one block per segment)
*/
template <
typename ChainedPolicyT, ///< Chained tuning policy
typename InputIteratorT, ///< Random-access input iterator type for reading input items \iterator
typename OutputIteratorT, ///< Output iterator type for recording the reduced aggregate \iterator
typename OffsetIteratorT, ///< Random-access input iterator type for reading segment offsets \iterator
typename OffsetT, ///< Signed integer type for global offsets
typename ReductionOpT, ///< Binary reduction functor type having member <tt>T operator()(const T &a, const T &b)</tt>
typename OutputT> ///< Data element type that is convertible to the \p value type of \p OutputIteratorT
__launch_bounds__ (int(ChainedPolicyT::ActivePolicy::ReducePolicy::BLOCK_THREADS))
__global__ void DeviceSegmentedReduceKernel(
InputIteratorT d_in, ///< [in] Pointer to the input sequence of data items
OutputIteratorT d_out, ///< [out] Pointer to the output aggregate
OffsetIteratorT d_begin_offsets, ///< [in] Pointer to the sequence of beginning offsets of length \p num_segments, such that <tt>d_begin_offsets[i]</tt> is the first element of the <em>i</em><sup>th</sup> data segment in <tt>d_keys_*</tt> and <tt>d_values_*</tt>
OffsetIteratorT d_end_offsets, ///< [in] Pointer to the sequence of ending offsets of length \p num_segments, such that <tt>d_end_offsets[i]-1</tt> is the last element of the <em>i</em><sup>th</sup> data segment in <tt>d_keys_*</tt> and <tt>d_values_*</tt>. If <tt>d_end_offsets[i]-1</tt> <= <tt>d_begin_offsets[i]</tt>, the <em>i</em><sup>th</sup> is considered empty.
int /*num_segments*/, ///< [in] The number of segments that comprise the sorting data
ReductionOpT reduction_op, ///< [in] Binary reduction functor
OutputT init) ///< [in] The initial value of the reduction
{
// Thread block type for reducing input tiles
typedef AgentReduce<
typename ChainedPolicyT::ActivePolicy::ReducePolicy,
InputIteratorT,
OutputIteratorT,
OffsetT,
ReductionOpT>
AgentReduceT;
// Shared memory storage
__shared__ typename AgentReduceT::TempStorage temp_storage;
OffsetT segment_begin = d_begin_offsets[blockIdx.x];
OffsetT segment_end = d_end_offsets[blockIdx.x];
// Check if empty problem
if (segment_begin == segment_end)
{
if (threadIdx.x == 0)
d_out[blockIdx.x] = init;
return;
}
// Consume input tiles
OutputT block_aggregate = AgentReduceT(temp_storage, d_in, reduction_op).ConsumeRange(
segment_begin,
segment_end);
// Normalize as needed
NormalizeReductionOutput(block_aggregate, segment_begin, d_in);
if (threadIdx.x == 0)
d_out[blockIdx.x] = reduction_op(init, block_aggregate);;
}
/******************************************************************************
* Policy
******************************************************************************/
template <
typename InputT, ///< Input data type
typename OutputT, ///< Compute/output data type
typename OffsetT, ///< Signed integer type for global offsets
typename ReductionOpT> ///< Binary reduction functor type having member <tt>T operator()(const T &a, const T &b)</tt>
struct DeviceReducePolicy
{
//------------------------------------------------------------------------------
// Architecture-specific tuning policies
//------------------------------------------------------------------------------
/// SM13
struct Policy130 : ChainedPolicy<130, Policy130, Policy130>
{
// ReducePolicy
typedef AgentReducePolicy<
128, 8, InputT, ///< Threads per block, items per thread, compute type
2, ///< Number of items per vectorized load
BLOCK_REDUCE_RAKING, ///< Cooperative block-wide reduction algorithm to use
LOAD_DEFAULT> ///< Cache load modifier
ReducePolicy;
// SingleTilePolicy
typedef ReducePolicy SingleTilePolicy;
// SegmentedReducePolicy
typedef ReducePolicy SegmentedReducePolicy;
};
/// SM20
struct Policy200 : ChainedPolicy<200, Policy200, Policy130>
{
// ReducePolicy (GTX 580: 178.9 GB/s @ 48M 4B items, 158.1 GB/s @ 192M 1B items)
typedef AgentReducePolicy<
128, 8, InputT, ///< Threads per block, items per thread, compute type
4, ///< Number of items per vectorized load
BLOCK_REDUCE_RAKING, ///< Cooperative block-wide reduction algorithm to use
LOAD_DEFAULT> ///< Cache load modifier
ReducePolicy;
// SingleTilePolicy
typedef ReducePolicy SingleTilePolicy;
// SegmentedReducePolicy
typedef ReducePolicy SegmentedReducePolicy;
};
/// SM30
struct Policy300 : ChainedPolicy<300, Policy300, Policy200>
{
// ReducePolicy (GTX670: 154.0 @ 48M 4B items)
typedef AgentReducePolicy<
256, 20, InputT, ///< Threads per block, items per thread, compute type, compute type
2, ///< Number of items per vectorized load
BLOCK_REDUCE_WARP_REDUCTIONS, ///< Cooperative block-wide reduction algorithm to use
LOAD_DEFAULT> ///< Cache load modifier
ReducePolicy;
// SingleTilePolicy
typedef ReducePolicy SingleTilePolicy;
// SegmentedReducePolicy
typedef ReducePolicy SegmentedReducePolicy;
};
/// SM35
struct Policy350 : ChainedPolicy<350, Policy350, Policy300>
{
// ReducePolicy (GTX Titan: 255.1 GB/s @ 48M 4B items; 228.7 GB/s @ 192M 1B items)
typedef AgentReducePolicy<
256, 20, InputT, ///< Threads per block, items per thread, compute type
4, ///< Number of items per vectorized load
BLOCK_REDUCE_WARP_REDUCTIONS, ///< Cooperative block-wide reduction algorithm to use
LOAD_LDG> ///< Cache load modifier
ReducePolicy;
// SingleTilePolicy
typedef ReducePolicy SingleTilePolicy;
// SegmentedReducePolicy
typedef ReducePolicy SegmentedReducePolicy;
};
/// SM60
struct Policy600 : ChainedPolicy<600, Policy600, Policy350>
{
// ReducePolicy (P100: 591 GB/s @ 64M 4B items; 583 GB/s @ 256M 1B items)
typedef AgentReducePolicy<
256, 16, InputT, ///< Threads per block, items per thread, compute type
4, ///< Number of items per vectorized load
BLOCK_REDUCE_WARP_REDUCTIONS, ///< Cooperative block-wide reduction algorithm to use
LOAD_LDG> ///< Cache load modifier
ReducePolicy;
// SingleTilePolicy
typedef ReducePolicy SingleTilePolicy;
// SegmentedReducePolicy
typedef ReducePolicy SegmentedReducePolicy;
};
/// MaxPolicy
typedef Policy600 MaxPolicy;
};
/******************************************************************************
* Single-problem dispatch
******************************************************************************/
/**
* Utility class for dispatching the appropriately-tuned kernels for device-wide reduction
*/
template <
typename InputIteratorT, ///< Random-access input iterator type for reading input items \iterator
typename OutputIteratorT, ///< Output iterator type for recording the reduced aggregate \iterator
typename OffsetT, ///< Signed integer type for global offsets
typename ReductionOpT, ///< Binary reduction functor type having member <tt>T operator()(const T &a, const T &b)</tt>
typename OutputT = ///< Data type of the output iterator
typename If<(Equals<typename std::iterator_traits<OutputIteratorT>::value_type, void>::VALUE), // OutputT = (if output iterator's value type is void) ?
typename std::iterator_traits<InputIteratorT>::value_type, // ... then the input iterator's value type,
typename std::iterator_traits<OutputIteratorT>::value_type>::Type, // ... else the output iterator's value type
typename SelectedPolicy = DeviceReducePolicy<
typename std::iterator_traits<InputIteratorT>::value_type,
OutputT,
OffsetT,
ReductionOpT> >
struct DispatchReduce :
SelectedPolicy
{
//------------------------------------------------------------------------------
// Problem state
//------------------------------------------------------------------------------
void *d_temp_storage; ///< [in] %Device-accessible allocation of temporary storage. When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
size_t &temp_storage_bytes; ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
InputIteratorT d_in; ///< [in] Pointer to the input sequence of data items
OutputIteratorT d_out; ///< [out] Pointer to the output aggregate
OffsetT num_items; ///< [in] Total number of input items (i.e., length of \p d_in)
ReductionOpT reduction_op; ///< [in] Binary reduction functor
OutputT init; ///< [in] The initial value of the reduction
cudaStream_t stream; ///< [in] CUDA stream to launch kernels within. Default is stream<sub>0</sub>.
bool debug_synchronous; ///< [in] Whether or not to synchronize the stream after every kernel launch to check for errors. Also causes launch configurations to be printed to the console. Default is \p false.
int ptx_version; ///< [in] PTX version
//------------------------------------------------------------------------------
// Constructor
//------------------------------------------------------------------------------
/// Constructor
CUB_RUNTIME_FUNCTION __forceinline__
DispatchReduce(
void* d_temp_storage,
size_t &temp_storage_bytes,
InputIteratorT d_in,
OutputIteratorT d_out,
OffsetT num_items,
ReductionOpT reduction_op,
OutputT init,
cudaStream_t stream,
bool debug_synchronous,
int ptx_version)
:
d_temp_storage(d_temp_storage),
temp_storage_bytes(temp_storage_bytes),
d_in(d_in),
d_out(d_out),
num_items(num_items),
reduction_op(reduction_op),
init(init),
stream(stream),
debug_synchronous(debug_synchronous),
ptx_version(ptx_version)
{}
//------------------------------------------------------------------------------
// Small-problem (single tile) invocation
//------------------------------------------------------------------------------
/// Invoke a single block block to reduce in-core
template <
typename ActivePolicyT, ///< Umbrella policy active for the target device
typename SingleTileKernelT> ///< Function type of cub::DeviceReduceSingleTileKernel
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t InvokeSingleTile(
SingleTileKernelT single_tile_kernel) ///< [in] Kernel function pointer to parameterization of cub::DeviceReduceSingleTileKernel
{
#ifndef CUB_RUNTIME_ENABLED
(void)single_tile_kernel;
// Kernel launch not supported from this device
return CubDebug(cudaErrorNotSupported );
#else
cudaError error = cudaSuccess;
do
{
// Return if the caller is simply requesting the size of the storage allocation
if (d_temp_storage == NULL)
{
temp_storage_bytes = 1;
break;
}
// Log single_reduce_sweep_kernel configuration
if (debug_synchronous) _CubLog("Invoking DeviceReduceSingleTileKernel<<<1, %d, 0, %lld>>>(), %d items per thread\n",
ActivePolicyT::SingleTilePolicy::BLOCK_THREADS,
(long long) stream,
ActivePolicyT::SingleTilePolicy::ITEMS_PER_THREAD);
// Invoke single_reduce_sweep_kernel
thrust::cuda_cub::launcher::triple_chevron(
1, ActivePolicyT::SingleTilePolicy::BLOCK_THREADS, 0, stream
).doit(single_tile_kernel,
d_in,
d_out,
num_items,
reduction_op,
init);
// Check for failure to launch
if (CubDebug(error = cudaPeekAtLastError())) break;
// Sync the stream if specified to flush runtime errors
if (debug_synchronous && (CubDebug(error = SyncStream(stream)))) break;
}
while (0);
return error;
#endif // CUB_RUNTIME_ENABLED
}
//------------------------------------------------------------------------------
// Normal problem size invocation (two-pass)
//------------------------------------------------------------------------------
/// Invoke two-passes to reduce
template <
typename ActivePolicyT, ///< Umbrella policy active for the target device
typename ReduceKernelT, ///< Function type of cub::DeviceReduceKernel
typename SingleTileKernelT> ///< Function type of cub::DeviceReduceSingleTileKernel
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t InvokePasses(
ReduceKernelT reduce_kernel, ///< [in] Kernel function pointer to parameterization of cub::DeviceReduceKernel
SingleTileKernelT single_tile_kernel) ///< [in] Kernel function pointer to parameterization of cub::DeviceReduceSingleTileKernel
{
#ifndef CUB_RUNTIME_ENABLED
(void) reduce_kernel;
(void) single_tile_kernel;
// Kernel launch not supported from this device
return CubDebug(cudaErrorNotSupported );
#else
cudaError error = cudaSuccess;
do
{
// Get device ordinal
int device_ordinal;
if (CubDebug(error = cudaGetDevice(&device_ordinal))) break;
// Get SM count
int sm_count;
if (CubDebug(error = cudaDeviceGetAttribute (&sm_count, cudaDevAttrMultiProcessorCount, device_ordinal))) break;
// Init regular kernel configuration
KernelConfig reduce_config;
if (CubDebug(error = reduce_config.Init<typename ActivePolicyT::ReducePolicy>(reduce_kernel))) break;
int reduce_device_occupancy = reduce_config.sm_occupancy * sm_count;
// Even-share work distribution
int max_blocks = reduce_device_occupancy * CUB_SUBSCRIPTION_FACTOR(ptx_version);
GridEvenShare<OffsetT> even_share;
even_share.DispatchInit(num_items, max_blocks, reduce_config.tile_size);
// Temporary storage allocation requirements
void* allocations[1] = {};
size_t allocation_sizes[1] =
{
max_blocks * sizeof(OutputT) // bytes needed for privatized block reductions
};
// Alias the temporary allocations from the single storage blob (or compute the necessary size of the blob)
if (CubDebug(error = AliasTemporaries(d_temp_storage, temp_storage_bytes, allocations, allocation_sizes))) break;
if (d_temp_storage == NULL)
{
// Return if the caller is simply requesting the size of the storage allocation
return cudaSuccess;
}
// Alias the allocation for the privatized per-block reductions
OutputT *d_block_reductions = (OutputT*) allocations[0];
// Get grid size for device_reduce_sweep_kernel
int reduce_grid_size = even_share.grid_size;
// Log device_reduce_sweep_kernel configuration
if (debug_synchronous) _CubLog("Invoking DeviceReduceKernel<<<%d, %d, 0, %lld>>>(), %d items per thread, %d SM occupancy\n",
reduce_grid_size,
ActivePolicyT::ReducePolicy::BLOCK_THREADS,
(long long) stream,
ActivePolicyT::ReducePolicy::ITEMS_PER_THREAD,
reduce_config.sm_occupancy);
// Invoke DeviceReduceKernel
thrust::cuda_cub::launcher::triple_chevron(
reduce_grid_size, ActivePolicyT::ReducePolicy::BLOCK_THREADS,
0, stream
).doit(reduce_kernel,
d_in,
d_block_reductions,
num_items,
even_share,
reduction_op);
// Check for failure to launch
if (CubDebug(error = cudaPeekAtLastError())) break;
// Sync the stream if specified to flush runtime errors
if (debug_synchronous && (CubDebug(error = SyncStream(stream)))) break;
// Log single_reduce_sweep_kernel configuration
if (debug_synchronous) _CubLog("Invoking DeviceReduceSingleTileKernel<<<1, %d, 0, %lld>>>(), %d items per thread\n",
ActivePolicyT::SingleTilePolicy::BLOCK_THREADS,
(long long) stream,
ActivePolicyT::SingleTilePolicy::ITEMS_PER_THREAD);
// Invoke DeviceReduceSingleTileKernel
thrust::cuda_cub::launcher::triple_chevron(
1, ActivePolicyT::SingleTilePolicy::BLOCK_THREADS, 0, stream
).doit(single_tile_kernel,
d_block_reductions,
d_out,
reduce_grid_size,
reduction_op,
init);
// Check for failure to launch
if (CubDebug(error = cudaPeekAtLastError())) break;
// Sync the stream if specified to flush runtime errors
if (debug_synchronous && (CubDebug(error = SyncStream(stream)))) break;
}
while (0);
return error;
#endif // CUB_RUNTIME_ENABLED
}
//------------------------------------------------------------------------------
// Chained policy invocation
//------------------------------------------------------------------------------
/// Invocation
template <typename ActivePolicyT>
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t Invoke()
{
typedef typename ActivePolicyT::SingleTilePolicy SingleTilePolicyT;
typedef typename DispatchReduce::MaxPolicy MaxPolicyT;
// Force kernel code-generation in all compiler passes
if (num_items <= (SingleTilePolicyT::BLOCK_THREADS * SingleTilePolicyT::ITEMS_PER_THREAD))
{
// Small, single tile size
return InvokeSingleTile<ActivePolicyT>(
DeviceReduceSingleTileKernel<MaxPolicyT, InputIteratorT, OutputIteratorT, OffsetT, ReductionOpT, OutputT>);
}
else
{
// Regular size
return InvokePasses<ActivePolicyT>(
DeviceReduceKernel<typename DispatchReduce::MaxPolicy, InputIteratorT, OutputT*, OffsetT, ReductionOpT>,
DeviceReduceSingleTileKernel<MaxPolicyT, OutputT*, OutputIteratorT, OffsetT, ReductionOpT, OutputT>);
}
}
//------------------------------------------------------------------------------
// Dispatch entrypoints
//------------------------------------------------------------------------------
/**
* Internal dispatch routine for computing a device-wide reduction
*/
CUB_RUNTIME_FUNCTION __forceinline__
static cudaError_t Dispatch(
void *d_temp_storage, ///< [in] %Device-accessible allocation of temporary storage. When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
size_t &temp_storage_bytes, ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
InputIteratorT d_in, ///< [in] Pointer to the input sequence of data items
OutputIteratorT d_out, ///< [out] Pointer to the output aggregate
OffsetT num_items, ///< [in] Total number of input items (i.e., length of \p d_in)
ReductionOpT reduction_op, ///< [in] Binary reduction functor
OutputT init, ///< [in] The initial value of the reduction
cudaStream_t stream, ///< [in] <b>[optional]</b> CUDA stream to launch kernels within. Default is stream<sub>0</sub>.
bool debug_synchronous) ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors. Also causes launch configurations to be printed to the console. Default is \p false.
{
typedef typename DispatchReduce::MaxPolicy MaxPolicyT;
cudaError error = cudaSuccess;
do
{
// Get PTX version
int ptx_version = 0;
if (CubDebug(error = PtxVersion(ptx_version))) break;
// Create dispatch functor
DispatchReduce dispatch(
d_temp_storage, temp_storage_bytes,
d_in, d_out, num_items, reduction_op, init,
stream, debug_synchronous, ptx_version);
// Dispatch to chained policy
if (CubDebug(error = MaxPolicyT::Invoke(ptx_version, dispatch))) break;
}
while (0);
return error;
}
};
/******************************************************************************
* Segmented dispatch
******************************************************************************/
/**
* Utility class for dispatching the appropriately-tuned kernels for device-wide reduction
*/
template <
typename InputIteratorT, ///< Random-access input iterator type for reading input items \iterator
typename OutputIteratorT, ///< Output iterator type for recording the reduced aggregate \iterator
typename OffsetIteratorT, ///< Random-access input iterator type for reading segment offsets \iterator
typename OffsetT, ///< Signed integer type for global offsets
typename ReductionOpT, ///< Binary reduction functor type having member <tt>T operator()(const T &a, const T &b)</tt>
typename OutputT = ///< Data type of the output iterator
typename If<(Equals<typename std::iterator_traits<OutputIteratorT>::value_type, void>::VALUE), // OutputT = (if output iterator's value type is void) ?
typename std::iterator_traits<InputIteratorT>::value_type, // ... then the input iterator's value type,
typename std::iterator_traits<OutputIteratorT>::value_type>::Type, // ... else the output iterator's value type
typename SelectedPolicy = DeviceReducePolicy<
typename std::iterator_traits<InputIteratorT>::value_type,
OutputT,
OffsetT,
ReductionOpT> >
struct DispatchSegmentedReduce :
SelectedPolicy
{
//------------------------------------------------------------------------------
// Problem state
//------------------------------------------------------------------------------
void *d_temp_storage; ///< [in] %Device-accessible allocation of temporary storage. When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
size_t &temp_storage_bytes; ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
InputIteratorT d_in; ///< [in] Pointer to the input sequence of data items
OutputIteratorT d_out; ///< [out] Pointer to the output aggregate
OffsetT num_segments; ///< [in] The number of segments that comprise the sorting data
OffsetIteratorT d_begin_offsets; ///< [in] Pointer to the sequence of beginning offsets of length \p num_segments, such that <tt>d_begin_offsets[i]</tt> is the first element of the <em>i</em><sup>th</sup> data segment in <tt>d_keys_*</tt> and <tt>d_values_*</tt>
OffsetIteratorT d_end_offsets; ///< [in] Pointer to the sequence of ending offsets of length \p num_segments, such that <tt>d_end_offsets[i]-1</tt> is the last element of the <em>i</em><sup>th</sup> data segment in <tt>d_keys_*</tt> and <tt>d_values_*</tt>. If <tt>d_end_offsets[i]-1</tt> <= <tt>d_begin_offsets[i]</tt>, the <em>i</em><sup>th</sup> is considered empty.
ReductionOpT reduction_op; ///< [in] Binary reduction functor
OutputT init; ///< [in] The initial value of the reduction
cudaStream_t stream; ///< [in] CUDA stream to launch kernels within. Default is stream<sub>0</sub>.
bool debug_synchronous; ///< [in] Whether or not to synchronize the stream after every kernel launch to check for errors. Also causes launch configurations to be printed to the console. Default is \p false.
int ptx_version; ///< [in] PTX version
//------------------------------------------------------------------------------
// Constructor
//------------------------------------------------------------------------------
/// Constructor
CUB_RUNTIME_FUNCTION __forceinline__
DispatchSegmentedReduce(
void* d_temp_storage,
size_t &temp_storage_bytes,
InputIteratorT d_in,
OutputIteratorT d_out,
OffsetT num_segments,
OffsetIteratorT d_begin_offsets,
OffsetIteratorT d_end_offsets,
ReductionOpT reduction_op,
OutputT init,
cudaStream_t stream,
bool debug_synchronous,
int ptx_version)
:
d_temp_storage(d_temp_storage),
temp_storage_bytes(temp_storage_bytes),
d_in(d_in),
d_out(d_out),
num_segments(num_segments),
d_begin_offsets(d_begin_offsets),
d_end_offsets(d_end_offsets),
reduction_op(reduction_op),
init(init),
stream(stream),
debug_synchronous(debug_synchronous),
ptx_version(ptx_version)
{}
//------------------------------------------------------------------------------
// Chained policy invocation
//------------------------------------------------------------------------------
/// Invocation
template <
typename ActivePolicyT, ///< Umbrella policy active for the target device
typename DeviceSegmentedReduceKernelT> ///< Function type of cub::DeviceSegmentedReduceKernel
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t InvokePasses(
DeviceSegmentedReduceKernelT segmented_reduce_kernel) ///< [in] Kernel function pointer to parameterization of cub::DeviceSegmentedReduceKernel
{
#ifndef CUB_RUNTIME_ENABLED
(void)segmented_reduce_kernel;
// Kernel launch not supported from this device
return CubDebug(cudaErrorNotSupported );
#else
cudaError error = cudaSuccess;
do
{
// Return if the caller is simply requesting the size of the storage allocation
if (d_temp_storage == NULL)
{
temp_storage_bytes = 1;
return cudaSuccess;
}
// Init kernel configuration
KernelConfig segmented_reduce_config;
if (CubDebug(error = segmented_reduce_config.Init<typename ActivePolicyT::SegmentedReducePolicy>(segmented_reduce_kernel))) break;
// Log device_reduce_sweep_kernel configuration
if (debug_synchronous) _CubLog("Invoking SegmentedDeviceReduceKernel<<<%d, %d, 0, %lld>>>(), %d items per thread, %d SM occupancy\n",
num_segments,
ActivePolicyT::SegmentedReducePolicy::BLOCK_THREADS,
(long long) stream,
ActivePolicyT::SegmentedReducePolicy::ITEMS_PER_THREAD,
segmented_reduce_config.sm_occupancy);
// Invoke DeviceReduceKernel
thrust::cuda_cub::launcher::triple_chevron(
num_segments,
ActivePolicyT::SegmentedReducePolicy::BLOCK_THREADS, 0, stream
).doit(segmented_reduce_kernel,
d_in,
d_out,
d_begin_offsets,
d_end_offsets,
num_segments,
reduction_op,
init);
// Check for failure to launch
if (CubDebug(error = cudaPeekAtLastError())) break;
// Sync the stream if specified to flush runtime errors
if (debug_synchronous && (CubDebug(error = SyncStream(stream)))) break;
}
while (0);
return error;
#endif // CUB_RUNTIME_ENABLED
}
/// Invocation
template <typename ActivePolicyT>
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t Invoke()
{
typedef typename DispatchSegmentedReduce::MaxPolicy MaxPolicyT;
// Force kernel code-generation in all compiler passes
return InvokePasses<ActivePolicyT>(
DeviceSegmentedReduceKernel<MaxPolicyT, InputIteratorT, OutputIteratorT, OffsetIteratorT, OffsetT, ReductionOpT, OutputT>);
}
//------------------------------------------------------------------------------
// Dispatch entrypoints
//------------------------------------------------------------------------------
/**
* Internal dispatch routine for computing a device-wide reduction
*/
CUB_RUNTIME_FUNCTION __forceinline__
static cudaError_t Dispatch(
void *d_temp_storage, ///< [in] %Device-accessible allocation of temporary storage. When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
size_t &temp_storage_bytes, ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
InputIteratorT d_in, ///< [in] Pointer to the input sequence of data items
OutputIteratorT d_out, ///< [out] Pointer to the output aggregate
int num_segments, ///< [in] The number of segments that comprise the sorting data
OffsetIteratorT d_begin_offsets, ///< [in] Pointer to the sequence of beginning offsets of length \p num_segments, such that <tt>d_begin_offsets[i]</tt> is the first element of the <em>i</em><sup>th</sup> data segment in <tt>d_keys_*</tt> and <tt>d_values_*</tt>
OffsetIteratorT d_end_offsets, ///< [in] Pointer to the sequence of ending offsets of length \p num_segments, such that <tt>d_end_offsets[i]-1</tt> is the last element of the <em>i</em><sup>th</sup> data segment in <tt>d_keys_*</tt> and <tt>d_values_*</tt>. If <tt>d_end_offsets[i]-1</tt> <= <tt>d_begin_offsets[i]</tt>, the <em>i</em><sup>th</sup> is considered empty.
ReductionOpT reduction_op, ///< [in] Binary reduction functor
OutputT init, ///< [in] The initial value of the reduction
cudaStream_t stream, ///< [in] <b>[optional]</b> CUDA stream to launch kernels within. Default is stream<sub>0</sub>.
bool debug_synchronous) ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors. Also causes launch configurations to be printed to the console. Default is \p false.
{
typedef typename DispatchSegmentedReduce::MaxPolicy MaxPolicyT;
if (num_segments <= 0)
return cudaSuccess;
cudaError error = cudaSuccess;
do
{
// Get PTX version
int ptx_version = 0;
if (CubDebug(error = PtxVersion(ptx_version))) break;
// Create dispatch functor
DispatchSegmentedReduce dispatch(
d_temp_storage, temp_storage_bytes,
d_in, d_out,
num_segments, d_begin_offsets, d_end_offsets,
reduction_op, init,
stream, debug_synchronous, ptx_version);
// Dispatch to chained policy
if (CubDebug(error = MaxPolicyT::Invoke(ptx_version, dispatch))) break;
}
while (0);
return error;
}
};
} // CUB namespace
CUB_NS_POSTFIX // Optional outer namespace(s)